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Abstract
Addressing the position bias is of pivotal importance for performing unbiased off-policy training and evaluation in Learning
To Rank (LTR). This requires accurate estimates of the probabilities of the users examining the slots where items are displayed,
which in many applications is likely to depend on multiple factors, e.g. the screen size. This leads to a position-bias curve
that is no longer constant, but depends on the context. Existing position-bias estimators are either non-contextual or require
multiple deployed ranking policies. We propose a novel contextual position-bias estimator that only requires propensities
logged from a single stochastic logging policy. Empirical evaluations assess the accuracy of the model in recovering the
position-bias curves as well as the impact on off-policy evaluation, showing how a contextual position-bias estimator can
deliver better reward estimates which are more robust to non-stationarity compared to a non-contextual one.
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1. Introduction
Recommender systems have large catalogs from which
to source content to users, and users are usually served
with a list of items from which they can choose which
items to consume. Optimizing the ranking of presented
items heavily impacts the success of recommendation,
since users typically only interact with items at the top
of a ranking. Industrial systems can leverage vast quanti-
ties of past user interactions, which can be used to train
new ranking policies and evaluate them offline, before
deploying them. Most of the time, these logged inter-
actions only provide implicit feedback that is subject
to different sources of biases [1], which need to be ad-
dressed both in training and evaluation. For instance,
When considering clicks—which arguably constitute the
most abundant signal in recommender systems—one can-
not directly interpret a non-click as the user not being
interested in the recommended item. In fact, when users
are presented a list of items to interact with, they can
only click on items that the production policy decided
to present to the user (i.e., selection bias), and they are
more likely to examine top positions than bottom ones
(i.e., position bias) [2]. These biases can be addressed
using click models that describe how the user interacts
with the recommended items [3, 4, 5]. By incorporating
these modelling assumptions, we can perform unbiased
off-policy training [6, 7, 8] and evaluation [9].

One of the most popular click models is the position-
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based model, which models the click as the realisation
of two independent events: examination of the position
and relevance of the item (see section 2.1 for more de-
tails). To apply this click model to off-policy training and
evaluation, one must estimate the vector of examination
probabilities for each displayed position, also called the
position-bias curve. The first methods that appeared in the
literature provided estimators for a single position-bias
curve to be used for every query [10, 11, 12]. However,
in many applications, the examination probabilities are
influenced by many factors: the size and shape of the
user’s screen; the time of day or day of week; the will-
ingness of a user to explore the recommended options;
the type of subscription to a paid service, which could
limit the number of arbitrary interactions (e.g. num-
ber of on-demand streams in a streaming media service)
and hence push the user to explore the available options
more carefully. One strategy to tackle this dependency
consists of partitioning the data and estimating a sepa-
rate position bias curve for each combination of factors.
Unfortunately, this solution would not scale, since (i)
the number of combinations grows exponentially with
the amount of contextual information, and (ii) for some
combinations there might be not enough data for a suffi-
ciently accurate estimate. On the other hand, contextual
information can be encoded as features in a parametric
model, and recent works [11, 13] have proposed such con-
textual position-bias estimators to provide examination
probabilities at a query level. However, existing models
present some limitations, as they either require multiple
deployed rankers, or they require accurately estimating
the items’ relevances, which is arguably as difficult as
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the ranking problem itself.
In this work, we extend the contextual estimator

from [14], requiring only a single stochastic policy to
be deployed, and for which propensities are known. The
contributions of the paper can be summarised as follows:

• We propose Policy-Aware Contextual Interven-
tion Harvesting (PA-C-IH), a contextual position-
bias estimator, which only requires propensities
logged from a single stochastic policy.

• We empirically confirm that the position-bias
curve can be accurately recovered when there
is dependence on contextual information.

• We explore the impact of contextual position-
bias estimation in off-policy evaluation, when
using reward estimators relying on the PBM as-
sumption. In particular, we show that contextual
position-bias estimation can provide off-policy
evaluations that are more accurate and more ro-
bust to non-stationarity in the context distribu-
tion compared to non-contextual estimation.

2. Background
The process of selecting the best ranking policy to be
deployed can be costly and time consuming. Running
A/B tests to compare multiple models can negatively af-
fect the user experience, as well as requiring operational
effort and time to gather enough data. In addition, A/B
testing does not scale when there are many policies to
be compared; for example, when considering a large set
of hyper-parameter configurations for a neural network-
based policy. Off-policy evaluation greatly simplifies this
process, allowing comparison of multiple policies using
data logged by a previously deployed policy, without the
risk of impacting the user experience. However, obtain-
ing accurate off-policy evaluation requires methods to
de-bias the estimated rewards. Many estimators have
been developed over the past decades [15, 16, 17, 18].
For ranking, these estimators often rely on assumptions
about users’ click behaviour [19, 9, 7].

2.1. The Position-Based Model
Many off-policy training and evaluation techniques are
based on Inverse Propensity Scoring (IPS) [20], an impor-
tance weighting technique used to counteract biases in
the data. In IPS estimators, rewards are re-weighted
by the inverse of their probabilities of occurring in the
logged data (i.e., propensities). Without any assumptions
on users’ click behaviour, each of these propensities is the
probability that the logging policy produced the entire
ranking; and due to the combinatorial nature of rankings,
this probability could tend to zero, even if the number of
items to rank and the number of available slots are not

large. Small inverse propensities cause large variance
in reward estimates. Hence, assumptions on the users’
click behaviour are usually introduced, so as to motivate
lower variance estimators. Among the most popular click
models, the Position-Based Model (PBM) [21, 2, 19] as-
sumes that clicks on the ranked items are independent,
and only characterized by the relevance of the item and
the probability of the user examining the position where
the item was displayed. Specifically, given a context 𝑥,
the probability of a click on an item 𝑎 in position 𝑘 is

P(𝐶 = 1 | 𝑎, 𝑘, 𝑥) = P(𝐸 = 1 | 𝑘, 𝑥) rel(𝑎, 𝑥)

where 𝐸 denotes the examination random variable, and
rel(𝑎, 𝑥) is the relevance of the item 𝑎 given the context
𝑥 (i.e. the probability of clicking on that item conditional
on having observed it). The object of interest is the ex-
amination probability 𝑝𝑘(𝑥) = P(𝐸 = 1 | 𝑘, 𝑥), and for
many position-bias estimators, the problem is simplified
by assuming there is no dependence of the examination
probabilities on the context, reducing the problem to
estimating a vector of 𝐾—the number of visible slots—
probabilities 𝑝 = (𝑝1, . . . , 𝑝𝐾). Contextual position-bias
estimation instead focuses on the general case, with the
goal of estimating a position-bias curve 𝑝(𝑥) for each
query defined by a context vector 𝑥 ∈ 𝒳 .

3. Related work
Position-bias estimation plays a central role in developing
ranking policies for recommendation and information
retrieval, as it provides the weights used to de-bias losses
in off-policy training and rewards in off-policy evalua-
tion. Different estimators have been proposed over the
years, starting from the simplest approach proposed by
Joachims et al. [10], which requires items to be randomly
swapped in order to estimate the examination probabil-
ities. Following the PBM assumption, when uniformly
swapping items in two positions, 𝑘 and 𝑘′, the differ-
ence in the CTR logged at those position is due to the
difference in the expected examination of the positions;
hence, we have 𝑝𝑘/𝑝𝑘′ = CTR𝑘/CTR𝑘′ . Pivoting on
a specific position, e.g. the first position, it is possible
to consistently estimate the position-bias curve, up to a
multiplicative constant, by the CTR ratios using random
swaps. These interventions can however be harmful to
the user’s experience, as displayed items deviate from the
optimized policy, pushing non-relevant items in higher
positions. Agarwal et al. [11] alleviated this problem
by introducing a way to fetch those interventions from
multiple different policies deployed online. However,
the deployment and maintenance of multiple policies
can be cumbersome. Thus Ruffini et al. [12] extended
the approach by requiring a single stochastic policy in
production. All of the aforementioned works estimate a



single, non-contextual position bias curve, whereas we
study contextual position bias estimation. The closest
work to ours is by Fang et al. [14], which extends the
intervention harvesting approach of Agarwal et al. [11]
to contextual position-bias estimation. The downside of
this approach is again the requirement of having multi-
ple different policies deployed, which is mitigated by the
method proposed in this paper, where we instead use a
single stochastic policy with known propensities.

Another stream of research worth mentioning focuses
on regression-based estimation. Wang et al. [8] pro-
pose estimators that use Expectation-Maximization (EM),
and in [22, 13] this method was extended for contextual
position-bias estimation. The regression approach has
the advantage of not needing randomized data, nor inter-
ventions, but at the cost of requiring accurate relevance
estimates for the ranked items. The latter requirement is
very challenging in practice, and is arguably as hard as
solving the ranking problem itself.

4. Contextual position-bias
estimator

Like [14], our proposed method does not require explicit
interventions, but rather harvests them from already de-
ployed policies. The estimator in [14] requires multiple
different policies; each query is served by one of the poli-
cies with a pre-defined probability. Here we propose an
estimator that instead uses the propensities of a single
stochastic logging policy 𝜋0. For each position pair 𝑘, 𝑘′,
the intervention sets are defined as

𝑆𝑘,𝑘′ = {(𝑥, 𝑎) : 𝜋0(𝑘, 𝑎|𝑥)𝜋0(𝑘
′, 𝑎|𝑥) > 0}

and the logging policy 𝜋0 is required to satisfy 𝑆𝑘,𝑘′ ̸= ∅
for all position pairs 𝑘 ̸= 𝑘′. This assumption boils
down to requiring that for every context 𝑥 and every
pair of positions 𝑘, 𝑘′, there exists at least one action
that can be displayed in both positions by the logging
policy. This differs from [14] where the intervention
sets consisted of items that could have been placed in
both positions under the multiple logging policies. As
in the case of explicit interventions, the CTRs in the
intervention sets can be used to estimate position-bias,
with the caveat that in this case the position-bias depends
on the context. For each observation in the set of the
𝑛 click logs 𝐷 = {(𝑥ℓ, 𝑐ℓ, 𝑎ℓ, 𝑘ℓ)}ℓ=1:𝑛 we can define
propensity-weighted click labels as follows:

�̂�ℓ𝑘,𝑘′ (𝑘) := 1{(𝑥ℓ,𝑎ℓ)∈𝑆𝑘,𝑘′}1{𝑘ℓ=𝑘}
𝑐ℓ

𝜋0(𝑘ℓ, 𝑎ℓ|𝑥ℓ)

¬�̂�ℓ𝑘,𝑘′ (𝑘) := 1{(𝑥ℓ,𝑎ℓ)∈𝑆𝑘,𝑘′}1{𝑘ℓ=𝑘}
1− 𝑐ℓ

𝜋0(𝑘ℓ, 𝑎ℓ|𝑥ℓ)
.

Conditioned on the context 𝑥, in expectation �̂�ℓ𝑘,𝑘′(𝑘) is
proportional to the examination probability 𝑝𝑘(𝑥) times

the average relevance of the intervention set 𝑟𝑘,𝑘′(𝑥).
The latter two quantities are hence modelled by two
neural networks ℎ(𝑘, 𝑥) and 𝑔(𝑘, 𝑘′, 𝑥) respectively. It
is worth noting that 𝑔(𝑘, 𝑘′, 𝑥) aims at estimating the
average relevance of the items that can be appear in
positions 𝑘 and 𝑘′ under the context 𝑥, rather than trying
to regress on the relevance of each item. The two neural
networks can be optimized by minimizing the loss

ℒ(ℎ, 𝑔,𝐷) =
∑︁
ℓ∈𝐷

∑︁
𝑘 ̸=𝑘′

�̂�ℓ𝑘,𝑘′ (𝑘) log
(︁
ℎ(𝑘, 𝑥ℓ)𝑔(𝑘, 𝑘′, 𝑥ℓ)

)︁
+ ¬�̂�ℓ𝑘,𝑘′ (𝑘) log

(︁
1− ℎ(𝑘, 𝑥ℓ)𝑔(𝑘, 𝑘′, 𝑥ℓ)

)︁
.

The contextual position-bias estimator PA-C-IH is thus
�̂�(𝑥)𝑘=ℎ*(𝑥, 𝑘)=argmaxℒ(ℎ, 𝑔,𝐷). Following anal-
ogous steps of Proposition 1 in [14], it can be proven that
the loss ℒ is equivalent to a weighted cross-entropy loss:∑︁
𝑥∈𝒳

∑︁
𝑘 ̸=𝑘′

�̂�𝑘,𝑘′ (𝑥)
[︁
𝑦𝑘,𝑘′ (𝑘, 𝑥) log

(︁
ℎ(𝑘, 𝑥)𝑔(𝑘, 𝑘′, 𝑥)

)︁
+ ¬𝑦𝑘,𝑘′ (𝑘, 𝑥) log

(︁
1− ℎ(𝑘, 𝑥)𝑔(𝑘, 𝑘′, 𝑥)

)︁
where �̂�𝑘,𝑘′ (𝑥) :=

∑︁
ℓ∈𝐷

1{𝑥ℓ=𝑥}1{(𝑥ℓ,𝑎ℓ)∈𝑆𝑘,𝑘′}

𝑦𝑘,𝑘′ (𝑘, 𝑥) =

∑︀
ℓ∈𝐷 1{𝑥ℓ=𝑥}�̂�

ℓ
𝑘,𝑘′ (𝑘)

𝑁𝑘,𝑘′ (𝑥)

¬𝑦𝑘,𝑘′ (𝑘, 𝑥) =

∑︀
ℓ∈𝐷 1{𝑥ℓ=𝑥}¬�̂�

ℓ
𝑘,𝑘′ (𝑘)

𝑁𝑘,𝑘′ (𝑥)

for which E[𝑦𝑘,𝑘′(𝑘, 𝑥)] = ℎ(𝑘, 𝑥)𝑔(𝑘, 𝑘′, 𝑥) and
E[¬�̂�𝑘,𝑘′(𝑘, 𝑥)] = 1 − ℎ(𝑘, 𝑥)𝑔(𝑘, 𝑘′, 𝑥) hold. Anal-
ogous to [14], in our experiments, both neural networks
ℎ(𝑘, 𝑥) and 𝑔(𝑘, 𝑘′, 𝑥) have one hidden layer with sig-
moid activation function in order to force the output
to be in the unit interval. The average relevance net-
work 𝑔(𝑘, 𝑘′, 𝑥) has an additional hidden layer to en-
sure that the output is a symmetric matrix; namely,
𝑔(𝑘, 𝑘′, 𝑥) = 1

2
(𝑔1(𝑘, 𝑘

′, 𝑥)𝑇 + 𝑔1(𝑘, 𝑘
′, 𝑥)), where 𝑔1

denotes the output of the first layer of the network.

5. Experiments
In this section, we empirically compare our con-
textual estimator PA-C-IH estimator against its non-
contextual counterpart, PA-IH [12]. We use synthetic
data consisting of 200K queries, with 5 items to be
ranked, of which two are relevant. Each query is de-
scribed by a context vector 𝑥 ∈ R5 sampled from
a mixture of three Gaussian distributions 𝒩 (𝜇𝑗 , 0.1)
with cluster means 𝜇1 = (0, 1,−1, 0, 0.5), 𝜇2 =
(1, 0.2,−0.2, 0.2, 1), 𝜇3 = (0.2, 0, 1, 0.3,−0.4), and
mixture weights (𝑢1, 𝑢2, 𝑢3) = (0.3, 0.3, 0.4). Follow-
ing the experimental setup in [14, 13], the examination
probabilities for position 𝑘, given context 𝑥, are defined



as P(𝐸 = 1 | 𝑘, 𝑥) = 1

𝑘max(0,⟨𝜔,𝑥⟩+1) . The parameter
𝜔 ∈ R5 determines the dependence of the examination
probability on the context. Its entries are sampled from
Uniform(−0.5, 0.5), and are then fixed for all queries.
The logging policy is a deterministic policy selecting the
same ranking for all queries, and perturbed by random
swaps such that each item maintains its original rank
with probability 0.55, or with probability 0.45 is swapped
uniformly at random with one of the other items. Clicks
are generated according to the contextual PBM.

5.1. Position-bias curve estimation
In order to estimate the position-bias curve, we first tune
the hyper-parameters of the two estimators: the optimiza-
tion parameters for PA-IH and PA-C-IH, and the number
of hidden layers for the two neural networks in PA-C-IH.
Figure 1 qualitatively shows that the contextual position-
bias estimator is able to recover the position-bias curve in
each cluster by using the context information, while the
non-contextual estimator only fits a position-bias curve
that averages across the clusters’ position-bias curves.
To quantify the accuracy of the position-bias estimates,
we compute the relative error,

RelError(�̂�) =
1

𝑁

𝑁∑︁
𝑖=1

1

𝐾

𝐾∑︁
𝑘=1

⃒⃒⃒⃒
1− �̂�𝑘(𝑥𝑖)

𝑝𝑘(𝑥𝑖)

⃒⃒⃒⃒
,

where 𝑁 is the number of queries, 𝐾 is the number of
slots in the displayed ranking, and 𝑝𝑗(𝑥𝑖) and �̂�𝑗(𝑥𝑖)
are the true and estimated examination probabilities for
position 𝑗 in request 𝑖 with context 𝑥𝑖, respectively. Since
position-bias estimates are used in off-policy training
and evaluation as inverse propensity scores, this metric
can better quantify—as it uses ratios instead of absolute
values—how accuracy in position-bias estimation would
affect accuracy of off-policy evaluation. Table 1 shows
the relative error of PA-C-IH and PA-IH on the synthetic
data, showing that the contextual position-bias estimator
can lead to significantly improved accuracy.

PA-C-IH PA-IH
RelError 0.0556 0.3434
95% CI [0.0556, 0.0557] [0.3427, 0.3443]

Table 1
Relative errors in position-bias curve estimation, and 95%
bootstrap confidence intervals, of the PA-C-IH and PA-IH
estimators on the synthetic dataset.

Figure 1: Position-bias estimation in the synthetic data. For
each cluster (green, blue, red), the solid line is the average
of the true position-bias curves, and the dashed line is the
average of the PA-C-IH estimates. Coloured bands are 95%
CI of the true position-bias curves (green, blue, red) in the
cluster, and of the corresponding PA-C-IH estimates (yellow).
The black dash-dotted line is the PA-IH estimate.

5.2. Off-policy evaluation
Among the off-policy estimators developed in the litera-
ture (see [9] for a comprehensive overview), an unbiased
reward estimator that leverages the PBM assumption in
off-policy evaluation is given by

𝑉 (𝜋) =
1

𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑟(𝑎𝑘)
⟨𝑝(𝑥𝑖), 𝜋(·, 𝑎𝑘|𝑥𝑖)⟩
⟨𝑝(𝑥𝑖), 𝜋0(·, 𝑎𝑘|𝑥𝑖)⟩

, (1)

where 𝜋 and 𝜋0 are the target and logging policies, re-
spectively; 𝑟(𝑎) is the reward logged for item 𝑎; 𝑝(𝑥) is
the position-bias curve for the request with context 𝑥,
and 𝜋(·, 𝑎|𝑥) denotes a vector of propensities for rank-
ing action 𝑎 at each of the 𝐾 positions, given context 𝑥.
We use this reward estimator below to compare different
position-bias estimators for off-policy evaluation.

5.2.1. Stationary environment

In the first experiment, off-policy evaluation was run on
the same data source used for position-bias estimation.
This setting is realistic under the assumption that the
environment does not change over time. Under station-
arity, one can expect that a position-bias curve estimated
on past data will still be valid when used in the future
for off-policy training and evaluation. The target pol-
icy to be evaluated here is a deterministic policy that
selects among three different rankings, serving the same
ranking for all queries within the same cluster. Figure
2 shows the reward estimated on the different clusters,
and on the full data set. The PA-C-IH estimator provides
much more accurate reward estimates for each of the clus-
ters, as well as the overall data set, compared to PA-IH,



which suffers from the bias introduced by using a single,
non-contextual position-bias curve when examination
probabilities are in fact contextual.

Figure 2: Off-policy evaluation on the synthetic data under
stationarity using position-bias estimates from PA-C-IH and
PA-IH. Bias of the estimated rewards with 95% CI are reported
for each cluster and for the full data.

5.2.2. Non-stationary environment

A less restrictive, and more realistic, setting is where the
distribution of queries shifts over time. Position-bias es-
timation requires data to be collected from a randomized
policy, without interventions that can affect the accuracy
of the logged propensities (e.g. promotion rules that alter
the ranking produced by the policy, thereby invalidating
the logged propensities). Such requirements could be
difficult to fulfill in real-world applications, thus prevent-
ing us from collecting a constant stream of randomized
data to update position-bias estimates. In addition to
that, it is reasonable to assume that shifts in the context
distribution can occur over time, for instance the change
in the distribution of the device used, or of the user ad-
hering to different subscription plans, or more generally
the non-stationarity induced by the launch of a new user
interface. It is therefore interesting to analyze how ro-
bust position-bias estimators are under non-stationarity
when used for off-policy evaluation. In the synthetic ex-
periment presented, we induce non-stationarity by using
a second data set, generated using the same procedure as
the data used for position-bias estimation, but with dif-
ferent cluster proportions. While in the training data the
cluster weights are (0.3, 0.3, 0.4), in the test data they
are set to (0.15, 0.1, 0.75). In order to isolate the effect
of non-stationarity in the context distribution, we eval-
uate a simpler policy than the one used in the previous
experiment. Here, the target policy is the determinis-
tic version of the data generation policy—namely, the
logging policy without the random swaps used in the

data generation step. It is worth recalling that this target
policy always selects the same ranking regardless of con-
text. Figure 3 shows the error in the off-policy estimation
on the test data, using PA-IH and PA-C-IH position-bias
curves estimated on the training data with a different
cluster distribution. PA-C-IH proves to be robust to such
distribution shifts, providing more accurate position-bias
estimates, which translate into more accurate off-policy
reward estimates, both within clusters and on the full
data set. PA-IH, on the other hand, estimates an over-
all average position-bias curve, which does not reflect
the actual average position-bias curve due to the context
distribution shift between the two data sets.

In this experiment the rankings selected by logging
and target policies do not depend on the context. Yet
even in this very simple scenario, if the position-bias is
contextual, a shift in the context distribution can cause
systematic bias in off-policy evaluation when using a
non-contextual position-bias estimator.

Figure 3: Off-policy evaluation on the synthetic data under
non-stationarity using position-bias estimates from PA-C-IH
and PA-IH. Bias of the estimated rewards with 95% CI are
reported for each cluster and for the full data.

6. Conclusion
We have proposed a new contextual position-bias esti-
mator, PA-C-IH, which does not require multiple rankers
to be deployed, but rather a single stochastic ranker for
which propensities are known. The latter is commonly
adopted in recommender systems in order to ensure a
certain level of exploration [23, 24, 25, 12], and our esti-
mator exploits the randomness of the logging policy to
provide a contextual estimate of the position-bias curve.
We have empirically shown that the PA-C-IH estimator
provides better position-bias estimates (compared to a
non-contextual estimator) when there is dependence on
contextual information, and we explored the impact this



can have on off-policy evaluation. We further demon-
strated how PA-C-IH can yield more robust off-policy
estimates in the presence of non-stationary distributions.

As part of future work, there are several directions
that can be investigated: (i) extend the evaluation of our
methods to real-world data; (ii) assess the impact of our
estimator in off-policy training of LTR algorithms [26, 6],
(iii) generalize our approach to incorporate other types
of click noises, such as trust bias.
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