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Off-Policy Estimation (OPE) methods allow us to learn and evaluate decision-making policies from logged data. This makes them an
attractive choice for the offline evaluation of recommender systems, and several recent works have reported successful adoption of
OPE methods to this end. An important assumption that makes this work, is the absence of unobserved confounders: random variables
that influence both actions and rewards at data collection time. Because the data collection policy is typically under the practitioner’s
control, the unconfoundedness assumption is often left implicit, and its violations are rarely dealt with in the existing literature.

This work aims to highlight the problems that arise when performing off-policy estimation in the presence of unobserved
confounders, specifically focusing on a recommendation use-case. We focus on policy-based estimators, where the logging propensities
are learned from logged data. We characterise the statistical bias that arises due to confounding, and show how existing diagnostics are
unable to uncover such cases. Because the bias depends directly on the true and unobserved logging propensities, it is non-identifiable.
As the unconfoundedness assumption is famously untestable, this becomes especially problematic. This paper emphasises this common,
yet often overlooked issue. Through synthetic data, we empirically show how naïve propensity estimation under confounding can
lead to severely biased metric estimates that are allowed to fly under the radar. We aim to cultivate an awareness among researchers
and practitioners of this important problem, and touch upon potential research directions towards mitigating its effects.
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1 INTRODUCTION & MOTIVATION

Inferring cause and effect from observational data is not a straightforward task, due to the presence of “unobserved
confounders” [20]. Indeed, if an unobserved variable exists that influences both the treatment and its outcome, this
can easily lead to biased estimates of the treatment effect. In the extreme case where the estimate changes sign, this
is known as “Simpson’s Paradox” [12]. Bottou et al. describe how to avoid such unpleasantries in counterfactual
learning scenarios, by carefully modelling the data-generating process [3]. Jadidinejad et al. describe how an instance
of Simpson’s Paradox is prevalent to occur in the offline evaluation of recommender systems—as the test data is often
influenced by an unknown recommendation policy that takes the role of the confounder [8]. Their proposed solution to
this problem involves Inverse Propensity Score (IPS) weighting [19, Ch. 9], with propensities that are estimated from
logged data. Estimating propensities is common practice in cases where the true propensities are unknown [1, 26],
and empirical results indicate that IPS with estimated propensities can even lead to favourable variance [7]. Whether
to simplify experimental setup or to deal with missing information in publicly available datasets, these works often
make the limiting assumption that the propensities are independent of user or context (see [8, §6.3] or [26, §3.3]). In the
very likely case that these assumptions are violated, this implies the presence of unobserved confounders.1 Existing
diagnostics for validating logged bandit feedback cannot detect these issues [15, 17], as we will show formally.

Unobserved confounding is a well-known issue in general off-policy reinforcement learning, and several methods have
been proposed to deal with it in the recent literature. They typically leverage additional data (such as interventions [6, 24]

1An analogous problem occurs in ranking applications when contextual independence is incorrectly assumed for position bias estimates [5].
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or instrumental variables [25]) or make assumptions about the nature of confounding variables [2, 13, 18]. Analogously,
instrumental variables have been leveraged to test for the unconfoundedness assumption [4], and other statistical
methods have been proposed to assess the sensitivity of results to potential confounders [16]. Nevertheless, in the
absence of additional tools, unconfoundedness is a famously untestable assumption, rendering its effects especially
troublesome. Focusing on the off-policy bandit setting with a guiding example in recommendation, we aim to answer:

“Can we reliably select the optimal policy from a set of competing policies, under unobserved confounding?”

2 OFF-POLICY ESTIMATION IN THE PRESENCE OF UNOBSERVED CONFOUNDERS

𝐴 𝑅

𝑋𝜋0

Fig. 1. Probabilistic Graphical
Model (PGM) for our setup.

Throughout this work, we denote random variables as 𝑋 , with specific instances as
𝑥 ∈ X. A contextual bandit problem consists of contexts 𝑋 (e.g. user and context
features), actions 𝐴 (e.g. item recommendations), and rewards 𝑅 (e.g. clicks, streams,
revenue). Rewards are causally influenced by both contexts and actions, as illustrated
by the edges in the causal graph shown in Figure 1. A contextual policy 𝜋 determines
which actions are selected (or sampled), thereby inducing a probability distribution
over 𝐴, which is often denoted with the shorthand 𝜋 (𝑎 |𝑥) B P(𝐴 = 𝑎 |𝑋 = 𝑥 ;Π = 𝜋).
A policy’s effectiveness is measured by the expected reward obtained when selecting actions according to that policy:
E𝑎∼𝜋 [𝑅]. In a recommendation application, this value can be estimated by deploying the policy in an online experiment.
However, since such experiments are typically costly, and we may have many policies to evaluate, we would rather
obtain reward estimates by other means.

Suppose there is an existing deployed policy, called the logging policy 𝜋0, with which we collect a dataset D0 B

{(𝑎𝑖 , 𝑟𝑖 )𝑁𝑖=1}. We will assume, as is often the case, that the logging policy, and the contextual covariates it uses, are
unobservable, as indicated by the dashed nodes and edges in Figure 1. Our goal is to leverage data logged under 𝜋0 to
estimate the expected reward under 𝜋—a problem often referred to as off-policy estimation [21].

One simple off-policy estimator is the Direct Method (DM). DM computes the expected reward under 𝜋 (Eq. 1) using
a model 𝑅𝐴DM (𝑎) that estimates the reward for every available action. Since we assume that contextual covariates
are unavailable, the best we can do for 𝑅𝐴DM (𝑎) is to naïvely count the observed rewards for every action (Eq. 2).

𝑅DM (𝜋) =
∑︁
𝑎∈A

𝑅𝐴DM (𝑎)𝜋 (𝑎). (1) 𝑅𝐴DM (𝑎) =
∑

(𝑎𝑖 ,𝑟𝑖 ) ∈D0 1{𝑎𝑖 = 𝑎} · 𝑟𝑖∑
(𝑎𝑖 ,𝑟𝑖 ) ∈D0 1{𝑎𝑖 = 𝑎} , (2)

Unfortunately, this estimator is biased, for two reasons: (a) it does not take into account the covariates 𝑋 (i.e., the model
is mis-specified), and (b) it ignores the selection bias from the logging policy 𝜋0, influencing the estimates in Eq. 2.

In theory, we can bypass both the model mis-specification and selection bias problems by leveraging the ideal IPS
estimator (Eq. 3), which is provably unbiased. Importantly, ideal IPS requires access to both the contextual covariates
and the exact action probabilities (propensities) under 𝜋0—which we assume are unavailable. Accordingly, we will adopt
the common practice of using estimated logging propensities 𝜋0 for IPS (Eq. 4). As the estimated propensities cannot
properly consider all covariates, this leads to unobserved confounding.

𝑅ideal−IPS (𝜋) =
1

|D0 |
∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑟𝑖 ) ∈D0

𝑟𝑖
𝜋 (𝑎𝑖 )

𝜋0 (𝑎𝑖 |𝑥𝑖 )
. (3) 𝑅estim−IPS (𝜋) =

1
|D0 |

∑︁
(𝑎𝑖 ,𝑟𝑖 ) ∈D0

𝑟𝑖
𝜋 (𝑎𝑖 )
𝜋0 (𝑎𝑖 )

. (4)

Using the fact that the ideal IPS estimator is unbiased, we can quantify the bias of the estimated IPS estimator as:

E[𝑅estim−IPS (𝜋)] − E𝑎∼𝜋 [𝑅] = E[𝑅estim−IPS (𝜋)] − E[𝑅ideal−IPS (𝜋)] = E
[
𝑅𝜋 (𝐴|𝑋 )

(
1

𝜋0 (𝐴)
− 1
𝜋0 (𝐴|𝑋 )

)]
. (5)
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To further illustrate our point, we resort to Pearl’s do-calculus framework [20]. What OPE methods wish to estimate
is the expected value of the reward given that a new policy intervenes on the action distribution. When unobserved
confounders are present, this interventional quantity is not equal to the observational quantity we can estimate from
logged data: E [𝑅 |𝐴 = 𝑎] ≠ E [𝑅 |do(𝐴 = 𝑎)]. Instead, we would require the “backdoor adjustment” to obtain:

E [𝑅 |do(𝐴 = 𝑎)] =
∑︁
𝑥∈X
E [𝑅 |𝐴 = 𝑎,𝑋 = 𝑥] . (6)

It should be clear that without access to 𝑋 , this estimand is non-identifiable, and this problem is not easily solved.

3 EXISTING DIAGNOSTICS FOR LOGGING PROPENSITIES DO NOT UNCOVER CONFOUNDING BIAS

Several diagnostics have been proposed in the literature to detect data quality issues with logged bandit feedback. In
particular, they try to uncover cases where the two classical assumptions of the IPS estimator do not hold [15, 17]:
(1) either the empirical action frequencies in the data do not match those implied by the logged propensities, or (2) the
logging policy does not have full support over the action space. Note that the presence of unobserved confounders does
not automatically violate these assumptions. As a result, the diagnostics that were proposed will not detect confounding
bias. Logging propensities can be estimated by empirically counting logged actions, as shown in Eq. 7. In doing so, we
obtain unbiased estimates of the true marginal action probabilities. Indeed, lim𝑁→∞ 𝜋0 (𝑎) = P(𝐴 = 𝑎 |Π = 𝜋0).

Li et al. propose the use of arithmetic and harmonic mean tests to compare empirical action frequencies with the
logging propensities [15]. As we define the logging propensities to be equal to the empirical action frequencies, it should
be clear that this test will trivially pass. Alternatively, London and Joachims propose to use the average importance
weight as a control variate, whose expectation should equal 1 for any target policy 𝜋 [17]. Here as well, because the
marginal propensities are unbiased (Eq. 7), we can show that the control variate remains unbiased as well (Eq. 8).

𝜋0 (𝑎) =
1

|D0 |
∑︁

(𝑎𝑖 ,𝑟𝑖 ) ∈D0

1{𝑎𝑖 = 𝑎} =
lim

𝑁→∞

P(𝐴 = 𝑎 |Π = 𝜋0) =
∑︁
𝑥∈X

P(𝐴 = 𝑎 |𝑋 = 𝑥,Π = 𝜋0)P(𝑋 = 𝑥). (7)

Theorem 3.1. The expectation of importance weights equals 1 for any target policy, when logging propensities are

estimated using marginal action probabilities:

E
𝑥∼P(𝑋 )

𝑎∼P(𝐴 |𝑋=𝑥,Π=𝜋0 )

[
𝜋 (𝑎)
𝜋0 (𝑎)

]
= 1.

Proof.

E
𝑥∼P(𝑋 )

𝑎∼P(𝐴 |𝑋=𝑥,Π=𝜋0 )

[
𝜋 (𝑎)
𝜋0 (𝑎)

]
=

∑︁
𝑎∈A

∑︁
𝑥∈X

𝜋 (𝑎)
𝜋0 (𝑎)

P(𝐴 = 𝑎 |𝑋 = 𝑥,Π = 𝜋0)P(𝑋 = 𝑥)

=
∑︁
𝑎∈A

𝜋 (𝑎)
𝜋0 (𝑎)

∑︁
𝑥∈X

P(𝐴 = 𝑎 |𝑋 = 𝑥,Π = 𝜋0)P(𝑋 = 𝑥)

=
lim

𝑁→∞

∑︁
𝑎∈A

𝜋 (𝑎)
∑
𝑥∈X P(𝐴 = 𝑎 |𝑋 = 𝑥,Π = 𝜋0)P(𝑋 = 𝑥)∑
𝑥∈X P(𝐴 = 𝑎 |𝑋 = 𝑥,Π = 𝜋0)P(𝑋 = 𝑥) =

∑︁
𝑎∈A

𝜋 (𝑎) = 1 □

(8)

□

As such, existing diagnostics are unable to detect issues of unobserved confounding. This implies that the self-
normalised IPS (SNIPS) estimator and its extensions that adopt the same control variate to reduce the variance of the
IPS estimator, would suffer equally when unobserved confounders are present [11, 23].
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P(𝑋 = 𝑥0) P(𝑋 = 𝑥1)
1 − 𝛼 𝛼

(a) Covariate distribution

E[R|X,A] 𝑎0 𝑎1

𝑥0 1.0 0.7
𝑥1 0.0 0.7

(b) Reward distribution

𝜋0 (a|x) 𝑎0 𝑎1

𝑥0 1.0 − 𝜖 𝜖

𝑥1 𝜖 1.0 − 𝜖

(c) Logging policy distribution

𝜋0 (a)
𝑎0 (1 − 𝜖)𝛼 + 𝜖 (1 − 𝛼)
𝑎1 (1 − 𝜖) (1 − 𝛼) + 𝜖𝛼

(d) Logging propensity estimates

Table 1. Data distributions for a guiding example that highlights issues with off-policy estimation under unobserved confounding.

10−4 10−3 10−2 10−1 100

ε

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

R̂
(π

a
1
)
−
R̂

(π
a

0
)

α = 0.50

Truth Correct Incorrect R̂ideal−IPS R̂estim−IPS

10−4 10−3 10−2 10−1 100

ε

α = 0.60

10−4 10−3 10−2 10−1 100

ε

α = 0.70

10−4 10−3 10−2 10−1 100

ε

α = 0.80

10−4 10−3 10−2 10−1 100

ε

α = 0.90

Fig. 2. Estimated differences in reward for various estimators. IPS with estimated propensities suffers from unobserved confounding.

4 EMPIRICAL VALIDATION OF THE EFFECTS OF UNOBSERVED CONFOUNDING ON SYNTHETIC DATA

We now describe a simple guiding example, and provide a Jupyter notebook that implements the methods described
earlier, on this example. Consider a setting with two possible actions and a binary covariate 𝑋 = {𝑥0, 𝑥1}, following the
distribution in Table 1a (parameterised with 𝛼 ∈

[ 1
2 , 1

]
). Rewards are Bernoulli-distributed, following Table 1b. The

logging policy is contextual, taking a suboptimal action with probability 𝜖 ∈ [0, 1], as shown in Table 1c. We can map
this to an intuitive setting: action 𝑎1 is of general appeal to the entire population (i.e. 𝑅 ⊥⊥ 𝑋 |𝐴 = 𝑎1); whereas action 𝑎0,
on the other hand, is specifically appealing to a more niche user-base (i.e. E[𝑅 |𝑋 = 𝑥0, 𝐴 = 𝑎0] > E[𝑅 |𝑋 = 𝑥0, 𝐴 = 𝑎1],
but P(𝑋 = 𝑥0) < P(𝑋 = 𝑥1)). Estimates for logging propensities can be obtained by empirical counting, as in Eq. 7. The
expected value for these estimated context-independent propensities is shown in Table 1d.

Naïve propensity estimation methods suffer from confounding bias. We simulate an off-policy estimation setup where
we wish to evaluate deterministic policies 𝜋𝑎 (𝑎) ≡ 1. We obtain 𝑁 = 2 · 106 samples from the synthetic distribution
described in Table 1, and compute the confounded estimate 𝑅estim−IPS, as well as the unobservable ideal IPS estimate
𝑅ideal−IPS. We vary both the level of selection bias 𝜖 (over the x-axis), and the confounding distribution 𝛼 (over columns)
in Fig. 2, where the y-axis shows the estimated difference in rewards from policies 𝜋𝑎1 and 𝜋𝑎0 . We shade the positive
and negative regions in the plot to clearly visualise when an off-policy estimator allows us to correctly identify the
optimal policy, or when it does not. We observe that the IPS estimator with estimated propensities fails considerably, in
that it will incorrectly identify 𝜋𝑎0 as the reward-maximising policy. Only when 𝜖 is sufficiently high (i.e. approaching
a uniform logging policy for 𝜖 = 0.5, and hence no confounding is present), 𝑅estim−IPS is able to correctly identify
𝜋𝑎1 . This shows that, even in simplified settings, the estimates we obtain from IPS with confounded estimates lead to
misleading conclusions. Furthermore, existing diagnostics cannot detect these problems when they occur.

5 CONCLUSIONS & OUTLOOK

Unobserved confounders lead to biased estimates, both for DM- and IPS-based methods. This problem has received
considerable attention in the research literature for general offline reinforcement learning use-cases, but the literature
dealing with these issues in recommendation settings remains scarce. Our work highlights that this is problematic—
especially in cases where propensities are estimated under simplifying independence assumptions. In doing so, we add
to the literature identifying problematic practices that might hamper progress in the field [9, 10, 14, 22].
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