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We propose two new estimators for off-policy evaluation of ranking policies, based on the idea of self-normalization. Importantly,

these estimators are parameter-free and asymptotically unbiased. Experiments with synthetic data demonstrate that our estimators can

be more accurate than other importance weighting estimators, owing to their ability to control variance, while adding minimal bias.

From this, we conclude that self-normalization offers an optimal balance of accuracy and practicality for off-policy ranker evaluation.
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1 INTRODUCTION

Off-policy evaluation—using the data collected by an existing policy to evaluate the performance of a new policy—is a

cornerstone of today’s search, recommendation and advertising systems. In these applications, a policy typically ranks

(and truncates) a set of available items. To date, off-policy evaluation of ranking policies usually involves structural

assumptions about how users engage with rankings—so-called click models [4] of user behavior. From a statistical

perspective, click models, and their associated estimators, can be analyzed in terms of their bias and variance. In this

paper, we focus on reducing variance, since this is often easier than reducing bias.

There are several popular methods to reduce variance, and all of them make some trade-off between bias, variance

and practicality. Importance weight clipping [3, 9] and doubly-robust [6, 8, 11, 17, 19] estimation are both effective at

reducing variance, but require the practitioner to either tune a hyper-parameter or estimate a reward model. A third

method of variance reduction, commonly referred to as self-normalization, uses a multiplicative control variate to rescale

the standard importance-weighting estimator [1, 12, 13, 15, 21]. This method has the advantage of being parameter-free,

requiring no additional tuning or estimation. Moreover, it is asymptotically unbiased [1, 12, 21]. For these reasons, we

(as well as others [20]) argue that self-normalization offers an optimal balance of bias, variance and practicality.

While self-normalization is well known, and has been applied in the “standard" contextual bandit setting, it has yet

to be applied to ranking problems. We therefore propose two methods of self-normalization applicable to a variety of

off-policy estimators for ranking. The first method is based on a local control variate for each position in the ranking; the

second is based on a global control variate, averaged across all positions. Focusing on the item-position click model [14],

we analyze the bias of each self-normalization method and prove upper bounds on their finite-sample behavior, showing

in both cases that the bias decays at a rate of O(𝑘/𝑛), where 𝑘 is the number of positions and 𝑛 the number of records.

We empirically demonstrate their effectiveness on synthetic ranking data, which illustrates how self-normalization

can indeed reduce variance, while maintaining an acceptable level of bias, thereby improving estimation accuracy.

These results, when considered with the practical benefits, suggest that self-normalization should be a go-to method for

off-policy evaluation of rankers.
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2 PRELIMINARIES

A contextual bandit problem consists of interactions between a policy, 𝜋 , and an environment. In each interaction, the

environment generates a context, 𝑥 ∈ X, which quantifies its current conditions and defines which actions, A, the

policy can take. The environment also generates a stochastic reward function, which quantifies the contextual utility

of each action. In a ranking scenario, the policy returns a sorted list of actions (alternatively, items), 𝐴 ≜ (𝑎1, . . . , 𝑎𝑘 ),
containing some subset of A.

1
We consider a semi-bandit setting in which reward can be observed for each action

(item) in the ranking, and use 𝑟 (𝑥,𝐴; 𝑗) to denote the reward for item 𝑎 at position 𝑗 in context 𝑥 . A policy can be

stochastic, so we denote its probability of selecting a ranking, given context 𝑥 , by 𝜋 (𝐴 | 𝑥); and the marginal probability

of ranking item 𝑎 at position 𝑗 in context 𝑥 , by 𝜋 (𝑎 | 𝑥, 𝑗). The quantity that we are interested in is a policy’s expected

reward over draws of contexts, reward functions and rankings: 𝑅(𝜋) ≜ E𝑥,𝑟 E𝐴∼𝜋 ( · | 𝑥 )
[∑𝑘

𝑗=1
𝑟 (𝑥,𝐴; 𝑗)

]
.

2.1 Off-Policy Evaluation

Assume that we have collected a dataset of contextual bandit interactions using an existing policy, which we call the

logging policy, 𝜋0. Let 𝑆 ≜ (𝑥𝑖 , (𝑎𝑖 𝑗 , 𝑟𝑖 𝑗 )𝑘𝑗=1
)𝑛
𝑖=1

denote the logged contexts, actions and rewards (𝑟𝑖 𝑗 ≜ 𝑟 (𝑥𝑖 , 𝐴𝑖 ; 𝑗)). We

may also log the propensities, 𝜋0 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗), or the logging policy itself. Using this data to estimate the expected reward

of a new policy—typically referred to as the target policy—we face the fundamental challenge in off-policy evaluation:

the distribution of rankings produced by 𝜋 may not be the same as 𝜋0. This discrepancy creates a counterfactual

conundrum; how can we reason about what would have happened had we deployed 𝜋 instead of 𝜋0?

Broadly speaking, there are two main approaches to this problem. The first approach, called the direct method, uses a

reward function estimate to predict the target policy’s expected reward in each logged context. This estimator has low

variance (assuming bounded rewards), but can be significantly biased if the reward predictions are inaccurate. The

alternative approach, known as importance weighting (a.k.a. importance sampling), re-weights the logged rewards using

ratios of probabilities of observing the logged actions. Under certain conditions, importance weighting estimators are

unbiased; however, they can have high variance. This tension between bias and variance is the central trade-off in

designing off-policy estimators. An estimator’s bias is, ultimately, a function of the environment’s unknown dynamics,

but its variance is largely determined by properties of the estimator and the number of samples. For this reason, we

focus on controlling the variance of importance weighting.

The standard importance weighting estimator can have extremely high variance with ranking policies, due to

the combinatorially large space of rankings. Thus, for ranking, one typically makes structural assumptions on user

behavior—so-called click models [4]—which leads to importance weights with a tighter range; and hence, lower variance.

We consider two click models and their associated estimators. One simple and general click model is the item-position

model (IPM) [14], which assumes that clicks at a given position depend only on the context and the item displayed at said

position. This assumption leads to the estimator in Eq. 8 (see Appendix B.3), which is unbiased—provided 𝜋0 (𝑎 | 𝑥, 𝑗)) > 0

whenever 𝜋 (𝑎 | 𝑥, 𝑗)) > 0. Since the IPM importance weights involve marginal item-position propensities, the estimator

has lower variance than standard importance weighting, but can nonetheless have high variance. Another popular

click model is the position-based model (PBM) [5], which further assumes that click probabilities factorize as a product

of relevance and position bias, 𝜌 𝑗 , which is the probability that a user examines position 𝑗 , independent of the item

displayed there. The corresponding estimator (Eq. 9 in Appendix B.3) typically has lower variance than IPM, but

potentially much higher bias, and requires an additional step of estimating the position biases [2, 7, 10, 18, 22].

1
For simplicity, we will assume that the length of a ranking (e.g., number of display positions) is always 𝑘 , and that A always contains at least 𝑘 items.
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Beyond click models, there are other ways to tune the bias-variance trade-off in importance weighting estimators. The

most straightforward method is to clip (alternatively, cap or truncate) the importance weights so that their magnitudes

never exceed a certain value [3, 9]. Though this effectively controls the variance, it can cause a nontrivial increase in

bias, and it requires the practitioner to select a clipping threshold. Another option is doubly-robust (DR) estimation

[6], which uses importance weighting to de-bias the direct method, while simultaneously reducing the variance of

importance weighting. To date, DR has only recently been applied to ranking applications [8, 11, 17, 19]. Despite its

attractive theoretical properties, DR can be somewhat burdensome to apply in practice as it requires estimating the

reward predictor, as well as several other parameters.

A third variance reduction technique is self-normalization (a.k.a. weighted importance sampling) [1, 12, 13, 15, 21].

Like DR, self-normalization uses control variates; but in this case, the control variate is the average of importance

weights that divides the importance weighted average. This introduces bias, but the bias vanishes asymptotically as

𝑛 → ∞. The primary advantage of this approach, over clipping and DR, is that it is parameter-free; there is nothing to

tune or estimate. This quality makes it particularly attractive to practitioners, who may not wish (or be able) to tune

their estimator’s bias-variance trade-off. In the next section, we introduce two self-normalized estimators for ranking.

3 SELF-NORMALIZATION FOR THE IPM

Our first self-normalized estimator is based on the observation that the IPM estimator can be written as a sum of

estimators in the standard contextual bandit setting, with one estimator for each position in the ranking. Accordingly,

we can apply self-normalization to each position. Let 𝑤𝑖 𝑗 ≜
𝜋 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗 )
𝜋0 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗 ) denote the importance weight for the item

at the 𝑗 th position of the 𝑖th logged ranking. Let Φ𝑗 ≜
1

𝑛

∑𝑛
𝑖=1

𝑤𝑖 𝑗 denote a local control variate for the 𝑗 th position. It

is easily verified that the expected value of each control variate is exactly one (see Lemma 1)—a useful property of

control variates that we exploit in our bias analysis. With these definitions, we introduce our first self-normalized IPM

estimator, SNIPM, in Eq. 1.

While SNIPM uses a separate control variate to normalize each positional reward estimate, one can also normalize

the entire IPM estimator with a single, global control variate. Let Φ̄ ≜ 1

𝑘

∑𝑘
𝑗=1

Φ𝑗 denote the average of positional

control variates. Since E[Φ𝑗 ] = 1 for all 𝑗 , we have that E[Φ̄] = 1; that is, Φ̄ is also a control variate. Accordingly, we

define another self-normalized estimator, SNIPM-G (Eq. 2)—which is simply the IPM estimator divided by Φ̄.

𝑅SNIPM (𝜋, 𝑆) ≜ 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗

Φ𝑗
, (1) 𝑅SNIPM-G (𝜋, 𝑆) ≜

1

𝑛Φ̄

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗 =
1

Φ̄
𝑅IPM (𝜋, 𝑆) (2)

3.1 Bias Analysis

Self-normalization adds bias to the IPM estimator, but we will show that the bias decreases as a function of 𝑛; meaning,

both SNIPM and SNIPM-G are asymptotically unbiased. All proofs for this section are deferred to Appendix A.

Proposition 1. Assume the following: (common support) for every 𝑥 ∈ X, 𝑎 ∈ A and 𝑗 ∈ {1, . . . , 𝑘}, if 𝜋 (𝑎 | 𝑥, 𝑗) > 0

then 𝜋0 (𝑎 | 𝑥, 𝑗) > 0; (bounded rewards) sup 𝑟 (·, ·) − inf 𝑟 (·, ·) ≤ 𝑀 < ∞; (importance weights have finite variance) for

each 𝑗 ∈ {1, . . . , 𝑘}, 𝜎2

𝑤𝑗
< ∞. Then, with𝑊 ≜ 1

𝑘

∑𝑘
𝑗=1

𝑤 𝑗 ,

E[𝑅SNIPM (𝜋, 𝑆)] − 𝑅(𝜋) ≤
𝑘∑︁
𝑗=1

𝑀 (6𝜎2

𝑤𝑗
+ 2𝜎𝑤𝑗

)
𝑛

(3)
and E[𝑅SNIPM-G (𝜋, 𝑆)] − 𝑅(𝜋) ≤

𝑘𝑀 (6𝜎2

𝑊
+ 2𝜎𝑊 )

𝑛
. (4)

3
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Fig. 1. Results of the synthetic data experiments. Figs. 1a and 1b fix 𝜖 = 0.91 and vary 𝑛, while Figs. 1c and 1d fix 𝑛 = 10
5 and vary 𝜖 .

For both estimators, the bias is of order O(𝑘/𝑛). Since we often assume that 𝑘 is a fixed constant, O(𝑘/𝑛) vanishes as
𝑛 → ∞. Note that Eqs. 3 and 4 are zero whenever the logging and target policies are the same, since in that case the

importance weights will have zero variance (they will all equal one). This supports the intuition that the estimator

should be unbiased when used for on-policy evaluation. Comparing the two bounds, we note that the bias bound of

SNIPM-G is less than that of SNIPM, due to the fact that 𝜎2

𝑊
≤ max𝑗 𝜎

2

𝑤𝑗
.

4 EXPERIMENTS

To validate our proposed estimators empirically, we conduct experiments using a synthetic data generator. This allows

us to compare off-policy reward estimates to “ground truth" reward for the target policy. The details of our data

generator and experimental methodology are given in Appendix B. We compare our proposed estimators, SNIPM and

SNIPM-G, to several natural baselines: IPM; cIPM (clipped IPM, with clipping threshold 𝜏)2; and PBM with either the

true position bias curve, 𝜌 , or an exponentiated copy of it, 𝜌1/2
or 𝜌2

, to simulate an incorrectly estimated curve. Note

that PBM with the true curve is unattainable in practice; we provide it only for reference.

Fig. 1a plots the mean squared error (MSE), with 95% confidence interval, as a function of the size of the dataset.

Both cIPM and the incorrectly specified PBM estimators exhibit error that does not decrease with more data, owing to

their respective biases (see Fig. 2a in Appendix B.4). In contrast, the error of IPM and SNIPM(-G) decreases, since this

error is mainly dominated by variance (see Fig. 1b), which vanishes as 𝑛 → ∞. SNIPM and SNIPM-G consistently show

lower variance than IPM, with SNIPM providing a bit more variance reduction, as expected. Note also that the bias of

SNIPM(-G) decreases with more data, which concurs with Proposition 1.
3
Ignoring the unrealistic PBM baseline (with

true 𝜌), SNIPM achieves the lowest error for 𝑛 ≥ 10
4
, followed by SNIPM-G and then IPM.

We also plot MSE as a function of the stochasticity of the logging policy, which is controlled by a parameter called the

stay probability, 𝜖 (see Appendix B.1). Decreasing the stochasticity (higher 𝜖) increases the variance of the importance

weights—which, in theory, should increase the variance and MSE of the estimators. We find that this is indeed the case,

but (ignoring the unrealistic PBM) SNIPM and SNIPM-G still have the lowest error and reduce the variance of IPM.

5 CONCLUSIONS AND FUTUREWORK

We have presented theoretical and empirical evidence that self-normalization is an easy, effective tool for reducing

variance in off-policy ranker evaluation, while incurring only a small, asymptotically decreasing bias. We conclude by

noting that self-normalization may be compatible with estimators other than just IPM; and it is further composable

with other variance reduction techniques, such as DR. We plan to investigate these possibilities in future work.

2
While clipping works with any importance weighting estimator, we only apply it to the IPM estimator, since PBM already reduces variance significantly.

3
The fact that IPM appears to have higher bias than SNIPM(-G) is likely due to error (caused by variance) in estimating the bias from a fixed sample.
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A DEFERRED PROOFS

A.1 Proof of Eq. 3

Before proceeding to the proof, we note two things. First, observe that the expected reward, 𝑅(𝜋), decomposes as a sum

of positional expected rewards:

𝑅(𝜋) =
𝑘∑︁
𝑗=1

E
𝑥,𝑟

E
𝑎∼𝜋 ( · | 𝑥,𝑗 )

[𝑟 (𝑥,𝐴; 𝑗)] ≜
𝑘∑︁
𝑗=1

𝑅(𝜋 ; 𝑗) .

Second, recall that SNIPM can be written as a sum of self-normalized estimators for the standard contextual bandit

setting, with one estimator per position:

𝑅SNIPM (𝜋, 𝑆) =
𝑘∑︁
𝑗=1

(
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 𝑗𝑟𝑖 𝑗

Φ𝑗

)
≜

𝑘∑︁
𝑗=1

𝑅SNIPS (𝜋, 𝑆 ; 𝑗) .

This particular estimator is commonly referred to as self-normalized inverse propensity scoring, which we refer to as

SNIPS, with an ‘S’, to distinguish it from SNIPM. All of the properties of SNIPS should transfer over to SNIPM, albeit

with a correction for the number of display positions. Thus, to upper-bound the bias of SNIPM, we will first upper-bound

the bias of SNIPS, which immediately yields a bound for SNIPM.

Prior work by Agapiou et al. [1] has established that the bias of SNIPS decreases at a rate of O(𝑛−1), which vanishes

as the dataset grows. Their result is stated for more general conditions than those we consider herein, and is thus not as

optimized as it could be. We therefore include our own proof, which is based on theirs, but with some minor corrections

and improvements.

In the following, we omit 𝑗 from our notation, since the results hold for any position.

Lemma 1. If, for all 𝑥 ∈ X and 𝑎 ∈ A, 𝜋 (𝑎 | 𝑥) > 0 implies 𝜋0 (𝑎 | 𝑥) > 0, then E[Φ] = 1.

Proof. Expanding the definition of Φ and applying via linearity of expectation, we have

E[Φ] = E
[

1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | 𝑥𝑖 )
𝜋0 (𝑎𝑖 | 𝑥𝑖 )

]
= E

𝑥
E

𝑎∼𝜋0 ( · | 𝑥 )

[
𝜋 (𝑎 | 𝑥)
𝜋0 (𝑎 | 𝑥)

]
= E

𝑥

∑︁
𝑎∈A

𝜋0 (𝑎 | 𝑥)
𝜋 (𝑎 | 𝑥)
𝜋0 (𝑎 | 𝑥)

= E
𝑥

∑︁
𝑎∈A

𝜋 (𝑎 | 𝑥)

= 1.

The common support assumption ensures that the importance weights are finite. □

Proposition 2. Assume: (1) the range of the reward function is bounded by some finite constant, sup 𝑟 (·, ·) − inf 𝑟 (·, ·) ≤
𝑀 < ∞; (2) the variance of the importance weights, 𝜎2

𝑤 , is finite. Then, for any constant 𝑡 ∈ (0, 1), the SNIPS estimator has

bias

E[𝑅SNIPS (𝜋, 𝑆)] − 𝑅(𝜋) ≤
𝑀𝜎2

𝑤

𝑛(𝑡 − 1)2
+
𝑀 (𝜎2

𝑤 + 𝜎𝑤)
𝑡 𝑛

. (5)

6
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In particular, for 𝑡 = 1/2,

E[𝑅SNIPS (𝜋, 𝑆)] − 𝑅(𝜋) ≤
6𝑀𝜎2

𝑤 + 2𝑀𝜎𝑤

𝑛
. (6)

Proof. We first define a function,

𝛽 (𝜋, 𝑆) ≜
(

1

Φ
− 1

) (
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖 − 𝑅(𝜋)

))
,

and note that its expected value,

E[𝛽 (𝜋, 𝑆)] = E
[(

1

Φ
− 1

) (
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖 − 𝑅(𝜋)

))]
= E

[(
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖

Φ

(
𝑟𝑖 − 𝑅(𝜋)

))]
− E

[
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖 − 𝑅(𝜋)

) ]
= E

[
𝑅SNIPS (𝜋, 𝑆)

]
− 𝑅(𝜋) − E

[
𝑅IPS (𝜋, 𝑆)

]
− 𝑅(𝜋)

= E
[
𝑅SNIPS (𝜋, 𝑆)

]
− 𝑅(𝜋) − 0,

is the bias of the SNIPS estimator. We will use a proof technique in which we decompose the bias into two parts, using

the event Φ ≤ 𝑡 , for any constant 𝑡 ∈ (0, 1). Via linearity of expectation,

E[𝛽 (𝜋, 𝑆)] = E[𝛽 (𝜋, 𝑆)1{Φ ≤ 𝑡}] + E[𝛽 (𝜋, 𝑆)1{Φ > 𝑡}] . (7)

We can now bound each of the righthand terms separately.

For E[𝛽 (𝜋, 𝑆)1{Φ ≤ 𝑡}], we will upper-bound Pr{Φ ≤ 𝑡} and use the fact that the rewards are range-bounded to

upper-bound the expression inside the expectation. Note that 1{Φ ≤ 𝑡}(Φ−1 − 1) is nonzero only when Φ ≤ 𝑡 , which is

when Φ−1 − 1 ≥ 𝑡−1 − 1 > 0. This means that

0 ≤
��1{Φ ≤ 𝑡}(Φ−1 − 1)

�� = 1{Φ ≤ 𝑡}(Φ−1 − 1) ≤ 1{Φ ≤ 𝑡}Φ−1 ≤ Φ−1 .

The last inequality holds because Φ ≥ 0. Thus, with 𝑟𝑖 ≜ 𝑟𝑖 − 𝑅(𝜋), we have that

𝛽 (𝜋, 𝑆)1{Φ ≤ 𝑡} = 1{Φ ≤ 𝑡}
(

1

Φ
− 1

) (
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)
≤

����1{Φ ≤ 𝑡}
(

1

Φ
− 1

)���� ����� 1𝑛 𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

�����
≤ 1

Φ

����� 1𝑛 𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

����� =
����� 1𝑛 𝑛∑︁

𝑖=1

𝑤𝑖

Φ
𝑟𝑖

����� .
The expression inside the absolute value is the SNIPS estimator with rewards 𝑟𝑖 . Since sup 𝑟 (·, ·) − inf 𝑟 (·, ·) ≤ 𝑀 , we

have that |𝑟𝑖 | ≤ 𝑀 , and

𝛽 (𝜋, 𝑆)1{Φ ≤ 𝑡} ≤
����� 1𝑛 𝑛∑︁

𝑖=1

𝑤𝑖

Φ
𝑟𝑖

����� ≤ 𝑀.
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Then, via Chebyshev’s inequality, for 𝑡 < 1, we have that

Pr{Φ ≤ 𝑡} = Pr{Φ − 1 ≤ 𝑡 − 1}

= Pr{Φ − E[Φ] ≤ −(1 − 𝑡)}

≤ Pr{|Φ − E[Φ] | ≥ (1 − 𝑡)}

≤ E[(Φ − E[Φ])2]
(𝑡 − 1)2

=
𝜎2

𝑤

𝑛(𝑡 − 1)2
.

In the second equality, we used the fact that the mean of the control variate is 1 (Lemma 1); and in the last equality, we

used the fact that the variance of the control variate is 𝜎2

𝑤/𝑛. Thus,

E[𝛽 (𝜋, 𝑆)1{Φ ≤ 𝑡}] ≤ 𝑀 Pr{Φ ≤ 𝑡} ≤
𝑀𝜎2

𝑤

𝑛(𝑡 − 1)2
.

Now, turning to the other side, E[𝛽 (𝜋, 𝑆)1{Φ > 𝑡}], we have that

E[𝛽 (𝜋, 𝑆)1{Φ > 𝑡}] = E
[
1{Φ > 𝑡}

(
1

Φ
− 1

) (
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)]
= E

[
1{Φ > 𝑡}

Φ
(1 − Φ)

(
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)]
≤ E

[
1{Φ > 𝑡}

Φ
|1 − Φ|

����� 1𝑛 𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

�����
]

≤ E
[
1{Φ > 𝑡}

𝑡
|1 − Φ|

����� 1𝑛 𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

�����
]

≤ 1

𝑡
E

[
|1 − Φ|

����� 1𝑛 𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

�����
]

≤ 1

𝑡

√︁
E[(1 − Φ)2]

√√√√√
E


(

1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)
2 .

The first inequality uses Jensen’s inequality and the fact that 1{Φ > 𝑡}Φ−1 ≥ 0; the second inequality follows from

Φ > 𝑡 , which implies Φ−1 ≤ 𝑡−1
; the third inequality removes 1{Φ > 𝑡} from the expectation because the remaining

terms are all nonnegative; and the final inequality follows from Cauchy-Schwarz. We are left with a product of standard

deviations. First, recall that

E[(1 − Φ)2] = E[(Φ − E[Φ])2] =
𝜎2

𝑤

𝑛
.

Further,

E


(

1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)
2 =

E
[
(𝑤𝑟 )2

]
𝑛

≤ 𝑀2 E[𝑤2]
𝑛

=
𝑀2 (𝜎2

𝑤 + 1)
𝑛

.
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Therefore,

1

𝑡

√︁
E[(1 − Φ)2]

√√√√√
E


(

1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑟𝑖

)
2 ≤ 1

𝑡

√︄
𝜎2

𝑤

𝑛

√︄
𝑀2 (𝜎2

𝑤 + 1)
𝑛

=
𝑀

𝑡 𝑛

√︃
𝜎4

𝑤 + 𝜎2

𝑤

≤ 𝑀

𝑡 𝑛
(𝜎2

𝑤 + 𝜎𝑤) .

Putting it all together, we have

E[𝛽 (𝜋, 𝑆)] ≤
𝑀𝜎2

𝑤

𝑛(𝑡 − 1)2
+
𝑀 (𝜎2

𝑤 + 𝜎𝑤)
𝑡 𝑛

,

which completes the proof of Eq. 5. Eq. 6 follows from plugging in 𝑡 = 1/2 and simplifying. □

Remark 1. One could optimize 𝑡 in Eq. 5, but this would require accounting for the constraint that 𝑡 ∈ (0, 1), which can

be accomplished via Lagrange multipliers. It is unclear whether optimizing 𝑡 would result in a significantly tighter or

interpretable bound. △

Since

E[𝑅SNIPM (𝜋, 𝑆)] − 𝑅(𝜋) =
𝑘∑︁
𝑗=1

E[𝑅SNIPS (𝜋, 𝑆 ; 𝑗)] − 𝑅(𝜋 ; 𝑗),

the proof of Eq. 3 follows directly from Proposition 2 (Eq. 6).

A.2 Proof of Eq. 4

Before proceeding to the proof, we first note that for any constant, 𝐶 ∈ R,

1

𝑛Φ̄

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝐶 =
𝐶 1

𝑛

∑𝑛
𝑖=1

∑𝑘
𝑗=1

𝑤𝑖 𝑗

1

𝑘

∑𝑘
𝑗=1

1

𝑛

∑𝑛
𝑖=1

𝑤𝑖 𝑗

= 𝑘𝐶.

We will use this fact in the proof.

Since the proof follows that of Proposition 2, we will overload some of the previous notation. Let

𝛽 (𝜋, 𝑆) ≜
(

1

Φ̄
− 1

) ©­« 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗

(
𝑟𝑖 𝑗 − 𝑅(𝜋)

)ª®¬ ,
and note that its expected value,

E[𝛽 (𝜋, 𝑆)] = E

(

1

Φ̄
− 1

) ©­« 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗

(
𝑟𝑖 𝑗 − 𝑅(𝜋)

)ª®¬


= E

©­«
1

𝑛Φ̄

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗

(
𝑟𝑖 𝑗 − 𝑅(𝜋)

)ª®¬
 − E


1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗

(
𝑟𝑖 𝑗 − 𝑅(𝜋)

)
= E

[
𝑅SNIPM-G (𝜋, 𝑆)

]
− 𝑘𝑅(𝜋) − E

[
𝑅IPM (𝜋, 𝑆)

]
− 𝑘𝑅(𝜋)

= E
[
𝑅SNIPM-G (𝜋, 𝑆)

]
− 𝑅(𝜋) − 0,

is the bias of the SNIPM-G estimator. Using the decomposition from Eq. 7, we will bound E[𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡}] and
E[𝛽 (𝜋, 𝑆)1{Φ̄ > 𝑡}] separately, for a value of 𝑡 ∈ (0, 1) to be specified later.
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For E[𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡}], we first upper-bound the magnitude of 𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡} using the fact that the rewards are

range-bounded. Using the same logic as in Proposition 2, with 𝑟𝑖 𝑗 ≜ 𝑟𝑖 𝑗 − 𝑅(𝜋), we have that

𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡} = 1{Φ̄ ≤ 𝑡}
(

1

Φ̄
− 1

) ©­« 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗
ª®¬

≤
����1{Φ̄ ≤ 𝑡}

(
1

Φ̄
− 1

)����
������ 1𝑛 𝑛∑︁

𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗

������
≤

������ 1

Φ̄

1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗

������
≤ 1

𝑛Φ̄

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑀 = 𝑘𝑀.

Further, using Chebyshev’s inequality and E[Φ̄] = 1, we have for 𝑡 < 1 that

Pr{Φ̄ ≤ 𝑡} = Pr{Φ̄ − E[Φ̄] ≤ −(1 − 𝑡)}

≤ E[(Φ̄ − E[Φ̄])2]
(𝑡 − 1)2

=
𝜎2

𝑊

𝑛(𝑡 − 1)2
.

In the last line, we used the fact that Φ̄ is an average of 𝑛 i.i.d. instantiations of the random variable𝑊 ; thus, its variance

is 𝜎2

𝑊
/𝑛. Combining the above inequalities, we have

E[𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡}] ≤ 𝑘𝑀 Pr{Φ̄ ≤ 𝑡} ≤
𝑘𝑀𝜎2

𝑊

𝑛(𝑡 − 1)2
.

Moving on to E[𝛽 (𝜋, 𝑆)1{Φ > 𝑡}], we have that

E[𝛽 (𝜋, 𝑆)1{Φ̄ > 𝑡}] ≤ 1

𝑡

√︃
E[(1 − Φ̄)2]

√√√√√
E

©­«
1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗
ª®¬

2,
using the same reasoning as in Proposition 2. Then,

E[(1 − Φ̄)2] = E[(Φ̄ − E[Φ̄])2] =
𝜎2

𝑊

𝑛
;

10
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and

E

©­«
1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗
ª®¬

2 =

E

[(∑𝑘
𝑗=1

𝑤 𝑗𝑟 𝑗

)
2

]
𝑛

≤
𝑀2 E

[(∑𝑘
𝑗=1

𝑤 𝑗

)
2

]
𝑛

=
𝑘2𝑀2 E[𝑊 2]

𝑛

=
𝑘2𝑀2 (𝜎2

𝑊
+ 1)

𝑛
,

where the last line uses the fact that 𝜎2

𝑊
= E[𝑊 2] − E[𝑊 ]2 = E[𝑊 2] − 1. Thus,

1

𝑡

√︃
E[(1 − Φ̄)2]

√√√√√
E

©­«
1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗𝑟𝑖 𝑗
ª®¬

2 ≤ 1

𝑡

√︄
𝜎2

𝑊

𝑛

√︄
𝑘2𝑀2 (𝜎2

𝑊
+ 1)

𝑛

=
𝑘𝑀

𝑡 𝑛

√︃
𝜎4

𝑊
+ 𝜎2

𝑊

≤ 𝑘𝑀

𝑡 𝑛
(𝜎2

𝑊 + 𝜎𝑊 ) .

Putting it all together, we have

E[𝛽 (𝜋, 𝑆)] = E[𝛽 (𝜋, 𝑆)1{Φ̄ ≤ 𝑡}] + E[𝛽 (𝜋, 𝑆)1{Φ̄ > 𝑡}]

≤
𝑘𝑀𝜎2

𝑊

𝑛(𝑡 − 1)2
+
𝑘𝑀 (𝜎2

𝑊
+ 𝜎𝑊 )

𝑡 𝑛
,

Finally, setting 𝑡 = 1/2 and reducing completes the proof.

B EXPERIMENT DETAILS

This appendix provides details of our experiments that were omitted from the main paper, due to space limitations.

B.1 Synthetic Data Generator

To simulate a ranking scenario, we generate data from a simple synthetic environment, with tunable parameters. In this

environment, there are |A| = 10 available actions (items), of which 𝑘 = 5 can be displayed. Actions are represented by

contextual feature vectors, which are drawn from a normal distribution with mean equal to the 1-hot encoding of the

action, and standard deviation 𝜎 = 0.1. (Thus, context is defined implicitly via the action features.) To test situations

in which the PBM is (in)correctly specified, we define the reward function as satisfying the PBM assumptions, with a

possibly unknown position bias curve, 𝜌 𝑗 = 1/ 𝑗 for 𝑗 = 1, . . . , 𝑘 . Relevance is defined as a linear threshold function,

rel(𝑎 | 𝑥, 𝑗) ≜ 1{a · 𝜽 ≥ 0}, where a is the contextual feature vector for action 𝑎, and 𝜽 is a weight vector. As such, a

click is computed for action 𝑎 at position 𝑗 as 𝑒 𝑗 · rel(𝑎 | 𝑥, 𝑗), where 𝑒 𝑗 ∈ {0, 1} is a Bernoulli random variable with mean

𝜌 𝑗 . Note that this calculation is independent of other actions and positions, thereby satisfying the IPM assumption.

Since we control the relevance function’s parameters, we define them in a way that favors certain actions. Without

loss of generality, we set 𝜽 = [−1, 1, 1,−1, 1,−1,−1, 1,−1,−1], such that actions (2, 3, 5, 8) are usually relevant, and the

11
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remaining actions are usually irrelevant. (We say “usually" because there is randomness in the contextual features that

could cause relevance to change.)

We use ranking policies that score actions according to a linear model, 𝝑 · a, then sort by score in descending order

(without truncating the list). In the case of the logging policy, we further randomize this rankings using a generalized

Fisher-Yates algorithm, which applies random swaps to the ranking. For a parameter 𝜖 ∈ (0, 1), which we refer to as

the stay probability, the probability that an item ranked at position 𝑗 is kept at that position is equal to 𝜖; and with

probability 1− 𝜖 , it is swapped with one of the other items, uniformly at random. Thus, the probability that the item at 𝑗

is equal to any of the items not originally ranked there is equal to
1−𝜖

|A |−1
. Finally, the (randomized) ranking is truncated

to the top 𝑘 items.

Without loss of generality, we define the logging and target policies’ respective model weights as:

𝝑log = [3, 1,−1, 2,−2, 0, 0, 4, 0, 0] and 𝝑tgt = [−1, 2, 3,−2, 4, 0, 0, 1, 0, 0] .

As such, the logging policy tends to place items (8, 1, 4, 2) at the top of the ranking and (3, 5) at the bottom, prior

to swapping. (Recall that there is randomness in the contextual features, which creates randomness in the scores.)

Similarly, the target policy tends to rank (5, 3, 2, 8) at the top and (1, 4) at the bottom. By design, there is some overlap

between the top-ranked items, but the policies are not identical.

B.2 Methodology

For each experiment, we perform 100 trials, wherein each trial we: generate a new dataset of contexts, actions and

rewards; execute the logging policy on said data to generate a simulated log dataset; execute the target policy on the

fully-observed data and average its earned rewards to generate “ground truth"; and finally, execute each estimator on

the log data and compare its estimated reward with the target policy’s ground truth.

When generating mean squared error, we average over the errors of the experiment trials. The corresponding

confidence intervals are computed using the normal approximation.

B.3 Baselines

We compare our estimators to several baselines. The first baseline is the IPM estimator [14],

𝑅IPM (𝜋, 𝑆) ≜ 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑟𝑖 𝑗
𝜋 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗)
𝜋0 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗)

. (8)

The clipped version of this estimator is given by

𝑅cIPM (𝜋, 𝑆) ≜ 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑟𝑖 𝑗 min

{
𝜋 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗)
𝜋0 (𝑎𝑖 𝑗 | 𝑥𝑖 , 𝑗)

, 𝜏

}
,

where 𝜏 ≥ 1 is the clipping threshold (which, in practice, must be tuned). We also compare to the policy-aware PBM

estimator [16],

𝑅PBM (𝜋, 𝑆) ≜ 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑟𝑖 𝑗

∑𝑘
ℓ=1

𝜋 (𝑎𝑖 𝑗 | 𝑥𝑖 , ℓ)𝜌ℓ∑𝑘
ℓ=1

𝜋0 (𝑎𝑖 𝑗 | 𝑥𝑖 , ℓ)𝜌ℓ
(9)

where 𝜌 𝑗 is the bias at position 𝑗 (which, in practice, must be estimated). In our experiments, we use either the true

position bias from the data generator (Appendix B.1), or an exponentiated copy of it, 𝜌1/2
or 𝜌2

, to simulate an incorrectly

estimated curve.
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B.4 Additional Plots

This section contains plots deferred from the main paper. Fig. 2 plots bias-variance decompositions for the PBM

estimators, both as a function of 𝑛 (fixing 𝜖 = 0.91) and 𝜖 (fixing 𝑛 = 10
5
).
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Fig. 2. Bias-variance decompositions for the PBM estimators.
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