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Abstract

We present a new PAC-Bayes generalization bound for structured prediction that
is applicable to perturbation-based probabilistic models. Our analysis explores the
relationship between perturbation-based modeling and the PAC-Bayes framework,
and connects to recently introduced generalization bounds for structured predic-
tion. We obtain the first PAC-Bayes bounds that guarantee better generalization
as the size of each structured example grows.

1 Introduction

Perturbation-based models represent a powerful new framework for structured probabilistic model-
ing where sampling is, by construction, efficient and exact. A perturbation-based model uses a dis-
tribution over a space of efficiently solvable optimizations. In some cases, they can be designed to
explicitly mimic equivalent exponential-family Markov random fields (e.g., [5, 15]). In other cases,
the class of distributions is distinct from standard probabilistic models (e.g., [18]). By defining their
distributions around tractable optimization problems, perturbation-based models admit efficient, ex-
act sampling procedures. These sampling procedures typically generate optimization parameters
from simple distributions, such as Gaussian or Gumbel; the sampled parameters are then used to de-
fine an efficient optimization problem, such as Gaussian inference, graph cuts, or matching. These
methods have been shown empirically to yield effective learning algorithms for novel structured
prediction tasks [5, 18]. In this paper, we introduce new theory to characterize the generalization
properties of learning a perturbation-based model, including new PAC-Bayes analysis for structured
predictors that yields tighter bounds than previous analyses.

PAC-Bayes is a theoretical framework for analyzing the generalization error of Bayesian learning
and randomized prediction. Perturbation-based sampling can be viewed as the Gibbs classifier in the
PAC-Bayes paradigm. In PAC-Bayes, this Gibbs classifier performs a random draw of a predictor
from a distribution over the hypothesis space. The PAC-Bayes hypothesis space corresponds to the
parameter space in which perturbations are made during perturb-and-MAP. Hypothesis complexity
in PAC-Bayes analysis is measured as the Kullback-Leibler (KL) divergence between a fixed prior
distribution and a learned posterior. PAC-Bayes analysis was introduced by McAllester [12] and
later refined by a number of authors [1, 9, 16], achieving some of the tightest known generalization
bounds for both randomized and deterministic predictors.

We connect the PAC-Bayes paradigm to new generalization bounds for structured prediction [11].
The tightest known PAC-Bayes bounds for structured prediction [14] decrease proportionally to
the number of training examples. Our new PAC-Bayes bound decreases with both the number
of examples and the size of each example. Accordingly, provided the data distribution exhibits
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suitably weak dependence within each structure, and the hypothesis class has certain properties—in
particular, a form of predictive smoothness which we call collective stability—our bounds can be
much tighter than previous bounds when training on a limited number of very large examples—even
just one.

Our bounds suggest a class of parameter distributions that may guarantee generalization. Because
the Gibbs classifier in PAC-Bayes analysis relates to the sampling process for perturbation-based
models, these generalization bounds can be applied to a restricted class of randomized optimum
models.

2 Preliminaries

We analyze generalization by relating it to the boundedness of the loss function, the smoothness of
the structured prediction, and weak dependency of the data generating process. We introduce some
notation and terminology useful for formalizing these concepts and applying them in our analysis. In
the structured prediction framework we consider, each example contains n interdependent random
variables, Z , {Zi}ni=1 , {(Xi, Yi)}ni=1, with joint distribution P.1 Each Zi takes values in a
sample space Z , X × Y .

We are interested in predicting Y , {Yi}ni=1, conditioned on X , {Xi}ni=1. Let H ⊆ {h : Xn →
Ŷn} denote a class of hypotheses, where Ŷ is not necessarily the same as Y . (For example, h could
output a label score instead of a label.) Let H denote a predetermined prior distribution over H,
and let Ĥ denote a posterior distribution, typically learned from training data. In the PAC-Bayes
framework, prediction is stochastic. Given an input X, we first draw a hypothesis h ∈ H according
to Ĥ, then compute the prediction Ŷ = h(X).

To make the relationship between this PAC-Bayes setting and perturbation-based models more con-
crete, consider the following pairwise MRF.

p(Y |X) ,
1

Π(X)
exp

∑
i∈V
〈wi, fi(Xi, Yi)〉+

∑
{i,j}∈E

〈wi,j , fi,j(Yi, Yj)〉

 (1)

Given evidence X = x, the Gibbs classifier would first draw a random weight vector w according
to a posterior distribution over the parameter space, then solve the desired inference problem (e.g.,
marginal or MAP). If the inference problem were efficiently solvable (such as a convex optimiza-
tion), then this would equivalent to a single round of sampling in a randomized optimum model.

For a loss function ` and hypothesis h, denote the average loss on a set of m structured examples,
Ẑ , {Z(l)}ml=1 = {{Z(l)

i }ni=1}ml=1, by

L(h, Ẑ) ,
1

mn

m∑
l=1

n∑
i=1

`
(
Y

(l)
i , hi(X

(l))
)
.

Let L(h) , E[L(h,Z)] denote the expected average loss (also known as the risk) over realizations
of a single example Z, which corresponds to the error h will incur on future predictions. Since
prediction is a stochastic process, we are also interested in the expectation of these measures over
draws of h, which we denote by L(Ĥ,Z) , Eh∼Ĥ[L(h,Z)] and L(Ĥ) , Eh∼Ĥ[L(h)].

We restrict our analysis to loss functions that satisfy certain admissibility conditions.

Definition 1. We say that a loss function ` : Y×Ŷ → R+ is (M,λ)-admissible if, for any y, y′ ∈ Y
and ŷ, ŷ′ ∈ Y , the following hold:

1. |`(y, ŷ)− `(y′, ŷ)| ≤M .
2. |`(y, ŷ)− `(y, ŷ′)| ≤ λ ‖ŷ − ŷ′‖1.

1We have assumed a one-to-one correspondence between input and output variables so as to minimize
bookkeeping, but this assumption can be relaxed.
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2.1 Collective Stability

A key component of our analysis is the algorithmic stability of joint inference. Stability ensures
that small changes to the input result in bounded variation in the output. In learning theory, it has
traditionally been used to quantify the variation in the output of a learning algorithm upon adding
or removing training examples [2]. We apply this concept to an arbitrary class of vector-valued
functions, F , {φ : Zn → RN}, where N does not necessarily equal n. For the following, let
distH(z, z′) ,

∑n
i=1 1{zi 6= z′i} denote the Hamming distance between two vectors z, z′ ∈ Zn.

Definition 2. We say that a function φ ∈ F has uniform collective stability β if, for any two inputs
z, z′ ∈ Zn such that distH(z, z′) = 1, ‖φ(z)− φ(z′)‖1 ≤ β. Similarly, we say that the class F has
uniform collective stability β if every φ ∈ F has uniform collective stability β.

The collective stability of a hypothesis extends to any admissible loss function.
Lemma 1 (London et al. [11]). If a loss function ` is (M,λ)-admissible, and a hypothesis h has
uniform collective stability β, then ` ◦ h has uniform collective stability (M + λβ).

2.2 Statistical Tools

We now review some supporting definitions that are used in our generalization bounds. For a fixed
permutation π of the variables, we use a dependency matrix Θπ

n to measure the dependence between
variables. See London et al. [11] for the formal definition. Put simply, each upper-off-diagonal entry,
θπi,j : i < j, measures the amount of influence that variable Zπ(i) has on variables Zπ(j), . . . , Zπ(n).
Our bound quantifies the overall dependence using the standard matrix infinity norm, ‖Θπ

n‖∞ ,
maxi∈[n]

∑n
j=1

∣∣θπi,j∣∣. Note that, If the variables are independent, then Θπ
n is the identity matrix,

and ‖Θπ
n‖∞ = 1.

We do not assume that Z corresponds to a temporal process, which is why the ordering π has such
a strong impact on ‖Θπ

n‖∞. In general, given a graph topology and an ordering of the vertices,
‖Θπ

n‖∞ measures the decay of dependence over graph distance. For instance, for Markov a tree
process, Kontorovich [7] orders the variables via a breadth-first traversal from the root; for an Ising
model on a lattice, Chazottes et al. [3] order the variables with a spiraling traversal from the origin.
In both of these instances, under suitable contraction or temperature regimes, the authors show that
‖Θπ

n‖∞ is bounded independent of n (i.e., ‖Θπ
n‖∞ = O(1)). We posit that the same holds for any

graph with bounded degree when the mixing coefficients exhibit geometric decay.

3 PAC-Bayes Bounds

Our PAC-Bayes proofs are based on a martingale technique due to Lever et al. [10] and Seldin et al.
[17]. The so-called “one-sided” bounds we present, while not as tight as some “two-sided” bounds,
are arguably more interpretable, and are easily obtained using martingale-based concentration in-
equalities. The proof is provided in the appendix.
Theorem 1. Fix any m ≥ 1, n ≥ 1, δ ∈ (0, 1) and π. Let H be a hypothesis class with uniform
collective stability β, and let ` be a (M,λ)-admissible loss function. Then, for any prior distribution
H on H, with probability at least 1 − δ over realizations of m examples, Ẑ , {{Z(l)

i }ni=1}ml=1, the
following holds simultaneously for all posteriors Ĥ onH:

L(Ĥ) ≤ L(Ĥ, Ẑ) + ‖Θπ
n‖∞ (M + λβ)

√
2 KL(Ĥ‖H) + 2 ln 2

δ

mn
. (2)

Note that, if ‖Θπ
n‖∞ and β do not grow with n, and KL(Ĥ‖H) is sublogarithmic in m and n, then

Equation 2 decreases with bothm and n. This makes it potentially tighter than existing bounds when
each structured example is large and the number of examples is small. Even for m = 1, Equation 2
goes to zero as n increases, meaning one can generalize from a single, large example.

It is also worth noting that, unlike some previous PAC-Bayes bounds for structured prediction [6,
14], our bounds do not have a lnm or lnn term in the numerator, though this may be added when
bounding the KL divergence term.
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4 Application to Perturbation Methods

We can directly apply Theorem 1 to a specific class of randomized optimum models. To obtain
nontrivial risk bounds, one needs to show that (1) KL(Ĥ‖H) = O(ln(mn)), and (2) β = O(1).
The first precondition is satisfied by certain constructions of the prior and posterior; we refer the
reader to Langford and Shawe-Taylor [9] and McAllester [13] for examples, and posit that these
techniques are easily extended to perturbation-based methods. London et al. [11] showed that the
second condition, uniform collective stability, is satisfied by a broad class of structured predictors; in
particular, if the model is templated (that is, uses parameter tying), the feature and weight norms are
uniformly bounded, and the (log-linear) inference objective (sometimes called the energy function)
is strongly convex.

To make this concrete, recall the pairwise MRF given in Equation 1. Suppose we replace the per-
clique weights, wi and wi,j , with weights ws for singletons and wp for pairs. We could then express
the conditional distribution as

p(Y |X) ,
1

Π(X)
exp (〈ws, fs(X,Y)〉+ 〈wp, fp(Y)〉) ,

where fs(X,Y) ,
∑
i∈V fi(Xi, Yi) and fp(Y) ,

∑
{i,j}∈E fi,j(Yi, Yj). To perform approximate

marginal inference in this graphical model, one solves the optimization

arg max
µ∈M

〈ws, µs〉+ 〈wp, µp〉+ Ψ(µ),

where M is the relaxed marginal polytope and Ψ is a κ-strongly convex surrogate for the nega-
tive entropy (e.g., the convexified Bethe approximation [19]). London et al. [11] showed that this
model has uniform collective stability (2

√
R(∆ + 1)/κ), where R is a uniform upper bound on

‖(ws, wp)‖∞, and ∆ is the maximum degree of the graph (which is assumed to be independent of
n).

In the perturbation framework, a randomized optimum model would first draw a random (ws, wp),
according to a posterior Ĥ, then solve the resulting convex optimization of maximizing Ew. Learn-
ing in this setting involves learning the parameters of Ĥ (e.g., mean and covariance for the weights).

The parameter tying differs from the traditional perturbation framework, in which one typically sam-
ples the weights for each clique independently. Templating may affect the statistical properties of
some perturbation-based methods, which might result in larger sampling requirements. This tradeoff
between computational complexity and model complexity (i.e., generalization) in the perturbation
framework is an interesting direction for future research.

Requiring the weight norms to be bounded is a simple modification to standard perturbation-based
models, but it precludes the possibility of using the full Gaussian or Gumbel distributions that yield
exact mapping between MRFs and perturb-and-MAP models. Yet the short tail of these distributions
means that the weight norms—thus, the collective stability—are almost-surely bounded. In recently
submitted work, we provide extensions to our theory, and applications thereof, that accommodate
distributions over unbounded parameter spaces.

The strong convexity condition on inference also differs from current instantiations of perturbation-
based models. We are also extending our theory to accommodate linear optimization objectives,
which encompass many of the optimization problems of interest for perturbation models.
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A Proof of Theorem 1

Our proof requires the following concentration inequality, which is an adaptation of Kontorovich
and Ramanan [8, Theorem 1.1].
Theorem 2. Let Z , {Zi}ni=1 be a set of random variables with joint distribution P. Let φ : Zn →
R be a measurable function that is (β/n)-Lipschitz w.r.t. the Hamming distance. Then, for any
τ ∈ R, ε > 0 and permutation π, with Θπ

n as defined in London et al. [11],

P
{
eτ(φ(Z)−E[φ(Z)]) ≥ ε

}
≤ 1

ε
exp

(
τ2β2 ‖Θπ

n‖
2
∞

8n

)
. (3)

We now prove Theorem 1. Start by defining a function φ(h, Ẑ) , L(h) − L(h, Ẑ), and a free
parameter u ∈ R. Using the change of measure inequality, due to Donsker and Varadhan [4], we
have for any prior and posterior distributions H, Ĥ overH,

L(Ĥ)− L(Ĥ, Ẑ) =
1

u
E
h∼Ĥ

[uφ(h, Ẑ)] ≤ 1

u

(
KL(Ĥ‖H) + ln E

h∼H

[
euφ(h,Ẑ)

])
. (4)

The remainder of the proof focuses on upper-bounding euφ(h,Ẑ) and optimizing u. Since umay be a
function of the posterior, we can’t optimize u for all posteriors simultaneously. We therefore adopt a
technique due to Seldin et al. [17] in which we discretize the space of u, then apply the union bound.
This approximately optimizes the bound for all posteriors simultaneously.

Let β`◦H , M + λβ. By Lemma 1, β`◦H is a uniform upper bound on the uniform collective
stability of ` ◦ h, for any h ∈ H, since H has uniform collective stability β. It is then easy to show
that φ(h, ·) is (β`◦H/(mn))-Lipschitz w.r.t. the Hamming distance, for all h ∈ H.

Define an infinite sequence of parameters, u0, u1, . . . , where

uj , 2j

√
8mn ln 2

δ

β2
`◦H ‖Θ

π
n‖

2
∞
.

Let δj , δ2−(j+1) and define the event

Ej , 1

{
eujφ(h,Ẑ) ≥ 1

δj
exp

(
u2jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)}
.

By Theorem 2, we have thatEj happens with probability less than δj ; therefore, by the union bound,
with probability at least 1−

∑∞
j=0 δj = 1− δ, every uj satisfies

E
h∼H

[
eujφ(h,Ẑ)

]
≤ 1

δj
exp

(
u2jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)
. (5)

Here we have used the fact that ‖Θπ
mn‖∞ = ‖Θπ

n‖∞ because Θπ
mn is block diagonal, with each

sub-matrix equal to Θπ
n. Combining Equations 4 and 5, we now have, with probability at least 1−δ,

every uj satisfies

L(Ĥ)− L(Ĥ, Ẑ) ≤
KL(Ĥ‖H) + ln 1

δj

uj
+
ujβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn
. (6)

Now, for any particular posterior Ĥ, there exists an approximately-optimal value uj? by taking

j? ,

⌊
1

2 ln 2
ln

(
KL(Ĥ‖H)

ln(2/δ)
+ 1

)⌋
.

Since, for all v ∈ R, v − 1 ≤ bvc ≤ v, one can easily show that

1

2

√√√√8mn
(

KL(Ĥ‖H) + ln 2
δ

)
β2
`◦H ‖Θ

π
n‖

2
∞

≤ uj? ≤

√√√√8mn
(

KL(Ĥ‖H) + ln 2
δ

)
β2
`◦H ‖Θ

π
n‖

2
∞

. (7)
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One can further show that

ln
1

δj?
≤ ln

2

δ
+

ln 2

2 ln 2
ln

(
KL(Ĥ‖H)

ln(2/δ)
+ 1

)
≤ ln

2

δ
+

1

2

(
KL(Ĥ‖H) + ln

2

δ

)
(8)

for all δ ∈ (0, 1). Combining Equation 6 with the lower and upper bounds from Equations 7 and 8,
we then have that, with probability at least 1− δ, uj? satisfies

L(Ĥ)− L(Ĥ, Ẑ) ≤ β`◦H ‖Θπ
n‖∞

√
2 KL(Ĥ‖H) + 2 ln 2

δ

mn
.

Substituting the definition of β`◦H completes the proof.
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