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Abstract

We study privacy in federated learning systems where the model is partitioned
into global and local components, the latter of which are personalized for each
participating client and never shared. This setting suggests a new type of privacy
breach: that the server might learn a client’s local model from updates to the global
model. Using on-device recommendation as a motivating example, we show that
this can in fact happen in various communication protocols, even when the client
obscures its update messages with noise. These findings raise new questions and
open problems about privacy in an emerging application of federated learning.

1 Introduction

Until recently, the de facto paradigm for industrial machine learning has been centralization. Voice
queries, browsing behavior and other interactions are uploaded to “the Cloud,” where they are mined
in the service of user experiences, such as search and recommendation. By aggregating data across
vast user bases, companies can train powerful intelligent systems. However, recent discoveries about
how companies use and give access to our data, and the repercussions thereof for society, have forced
a public conversation about data centralization and user privacy.

In response to increased privacy awareness, federated learning [22] has emerged as a promising
solution for machine learning with data security. Distributed in nature, federated learning reduces
security risks by keeping user data on-device, instead of uploading it to the Cloud. The only data
that passes between devices and the Cloud is the model, which is periodically pushed (or pulled)
to devices, where it is updated on local data, then returned to the Cloud. This not only protects
users’ privacy, it also enables enhanced personalization, such as health monitors for high-throughput
sensor data, or recommender systems that adapt in real-time to user feedback—things that would
be difficult or impossible to accomplish with centralized learning, due to data transfer costs and
inconsistent connectivity. While most of the literature on federated learning has focused on data
security, personalization is an equally compelling motivation.

In this work, we study a federated learning system designed for personalization—which we refer to
as federated personalization. In these systems, the server (i.e., the Cloud) is associated with a global
model, which is shared with all clients (e.g., mobile phone or smart speaker) and periodically pushed
to them. Further, each client is associated with its own local model, which is not shared with the
server or any other client. All clients are pre-programmed with a known predictor, which, given the
global and local models, maps a context (e.g., client state or user behavior) to a label (e.g., rating) or
action (e.g., recommendation). For instance, the predictor could be a function composition or some
arithmetic operation (e.g., a dot product or affine combination). Like traditional federated learning,
model parameters are updated on-device, using data collected from user interactions. However,
only updates to the global model—typically, gradient information, which can be used for first-order
optimization—are returned to the server, where they are aggregated.

One example application of federated personalization (which motivates our main results in Sec-
tion 3) is on-device recommendation. Recommendation models are typically partitioned into per-
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sonalized user factors and shared item factors, which interact in a learned latent space. This par-
titioning naturally lends itself to federation; the global model could be the set of item factors, and
the local model for a particular device could be the user’s factors. User feedback (e.g., like/dislike),
which is used for training, would never have to leave the device.1

We scrutinize this setting for potential privacy breaches, which we formalize using a new notion
of privacy motivated by federated personalization: namely, we ask whether the server can learn a
client’s local model using only updates to the global model. As this idea is similar to probably
approximately correct (PAC) learning [28], we call this property PAC identifiability. A dangerous
consequence of PAC identifiability is that, if the local model is sufficiently accurate, an adversary
can accurately reconstruct a user’s preferences. By construction, we show that PAC identifiability is
indeed possible in several communication protocols, using modest assumptions about the client and
learning setup. In particular, we show that adding noise to update messages does not defend against
our attack. This gives rise to new questions and open problems about privacy in federated learning.

Note. In this abbreviated version, we defer all proofs to Appendix A.

1.1 Related Work

The foundations of federated learning were laid out in McMahan et al.’s [22] landmark paper, in
which they introduced the federated averaging (FedAvg) algorithm, which forms the basis of the
protocols we consider. Shortly after its introduction, follow-up work extended the FedAvg algorithm
to guarantee privacy [14, 23, 2, 15, 26] using the formalism of differential privacy [10, 8, 18].
Though differential privacy may be the prevailing notion of privacy in machine learning, we argue
that the federated personalization setting motivates studying another form of privacy that accounts
for the local model. The learning protocol we consider in Section 4.2 resembles differentially private
federated learning, and our analysis reveals that even this setting is vulnerable to attacks.

The topic of personalization in federated learning has surfaced in multiple forms. Some work ex-
tended traditional recommender systems, such as matrix factorization [3, 7, 12]. The system we
analyze in Section 3 most closely resembles these approaches. Other works have approached person-
alization by partitioning the model into global and local (personalized) representations [4, 6, 9, 20],
which fits into our federated personalization framework. Personalization can also be cast as multi-
task learning [25] or meta-learning [19, 17, 11], with clients viewed as related learning tasks. From a
theoretical perspective, some have analyzed when a hybrid of collaborative and independent training
can achieve more accurate personalization than either of the extremes [9, 21].

Prior work has also studied data leakage from gradients [7, 24, 13]. What distinguishes our work
is that we are specifically interested in whether one can infer a local model, not the data it was
trained on. That said, Chai et al. [7] did describe a method to reconstruct user data that involves
estimating the local model—though they do not give formal guarantees as we do. Finally, we note
some tangential work that attempts to reverse engineer blackbox models using their predictions [27].

2 Privacy and the Local Model

Keeping user data on-device is a natural way to restrict access to it. However, this alone does not
guarantee privacy, since clients communicate with the server in other ways. Specifically, when a
client uploads an update to the global model, this message may leak critical information.

The standard formalism for privacy in the machine learning literature is differential privacy [10,
8, 18]. Informally, differential privacy guarantees that no single client’s data is likely to have an
outsized impact on the model, which effectively gives users plausible deniability that their data was
used in training. To guarantee differential privacy, federated learning algorithms typically apply
some form of corruption to the model updates, either at the server or the clients [14, 23, 2, 15, 26].

While differential privacy is considered by many to be the “right” definition of privacy for most data
analysis, federated personalization motivates an alternative privacy property. The existence of a local
model changes the dynamics of federated learning. Whereas participants in a federation typically
collaborate to learn a single model for all clients, the local model learned by each client in a federated
personalization system is tailored for an individual user. As we will show, this personalization means

1This does not, however, prevent the server from inferring implicit preferences, e.g., using playback events.
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that the local model can reveal sensitive information about the user. To protect the user’s privacy, a
client should conceal both the data and the local model.

We therefore ask whether the local model can be identified (to be defined in the sequel) based on the
messages returned to the server. We are primarily interested in what the server can infer, since the
server has direct communication with clients.2 In the following section, we formalize this notion of
privacy using the PAC learning framework, asking, can the server PAC learn the local model using
its update messages?

3 PAC Identifiability in Recommendation

Our analysis focuses on a simple federated personalization system for recommendation, which we
feel is a good starting point. There is precedent for federated recommender systems in the literature
[3, 7], which indicates that this setting is not that far-fetched.

Let I , {1, . . . , I} denote a large (yet finite), fixed catalog of I items (e.g., songs or videos). Let C
denote the set of clients participating in the federation. The system is designed to infer a preference
for each user (client), c ∈ C, with respect to each item, i ∈ I. For simplicity, we assume that
preferences are binary; you either like something or you do not. Accordingly, let yc,i ∈ {±1}
denote a binary preference label for client c with respect to item i. Further simplifying the problem,
we ignore contextual information and assume that preferences can be modeled by a linear classifier,
sgn(uc · vi), where {vi ∈ Rk}i∈I is a set of latent factors representing the items (i.e., the global
model) and uc ∈ Rk is a vector representing the user (i.e., the client’s local model).

We assume that each client has collected a dataset of labels, {yc,i}i∈Sc , for a subset of N items,
Sc ⊆ I, based on user interactions. They could, for instance, come from like/dislike feedback.
Ideally, the labels will be collected in an unbiased manner, though we do not assume as much unless
explicitly stated. The dataset may change over time, but we can safely assume that it is static during
periods when communication occurs, which should be while the client is inactive.

We also make the following key assumptions about the data and loss function used for training.

Assumption 1. For any client, c ∈ C, let pc , 1
N

∑
i∈Sc 1{yc,i > 0} denote their preference rate

(i.e., the fraction of items that they like), and assume that pc ∈ (0, 1/2).

Assumption 1 essentially states that users are interested in at most half of the items in their dataset.
We believe this assumption is natural, given that most content or product catalogs have millions of
items, many of which are irrelevant to any particular user; if Sc is a representative sample of the
user’s overall preferences, it will be heavily skewed toward negative labels. There is actually not
much generality lost by this assumption, because our analysis would also work with pc ∈ (1/2, 1).
The key is that pc 6= 1/2, and that we know which direction the user leans.

Assumption 2. Assume that the loss function, L : Rk × Rk × {±1} → R+, takes the form
L(uc,vi, yc,i) = `(yc,i uc ·vi), where ` : R→ R+ is an auxiliary function of the margin, yc,i uc ·vi.
Further, assume that the derivative of ` evaluated at 0 is nonzero; i.e., `′(0) 6= 0.

One example of a loss function that satisfies Assumption 2 is the negative margin loss, `(z) = −z,
which penalizes incorrect (or rewards correct) predictions proportional to how much they disagree
(or agree) with the label. Some other examples are the hinge loss, `(z) = max{0, 1 − z}, and the
log loss, `(z) = ln(1 + e−z), which is equivalent to the binary cross-entropy.

We now formally define PAC identifiability in this context.
Definition 1. A client, c ∈ C, using a given protocol (which may be stochastic), is PAC identifiable
if, for any ε ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ over T = poly(ε−1, δ−1) inter-
actions with the server, the server can output an estimate, ûc, of the local model (after interaction),
uc, such that 1

I

∑
i∈I 1{sgn(ûc · vi) 6= sgn(uc · vi)} ≤ ε.

To see the threat posed by PAC identifiability, consider the following repercussion.
Proposition 1. If a client, c ∈ C, is PAC identifiable, then for any ε ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1 − δ over T = poly(ε−1, δ−1) interactions with c, the server can output ûc

2One could also consider a third-party adversary (e.g., another client), but this is out of scope for our work.

3



such that, if uc (after interaction) has error rate 1
I

∑
i∈I 1{sgn(uc · vi) 6= yc,i} = η, then ûc has

error rate 1
I

∑
i∈I 1{sgn(ûc · vi) 6= yc,i} ≤ ε+ η.

Thus, if a client is PAC identifiable, and the local model is reasonably accurate, then the server
could infer all of the user’s preferences with reasonable accuracy. We could alternately redefine the
error quantities with respect to the client’s labeled items, Sc. Then, if the local model minimizes
empirical risk, PAC identifiability implies recovery of the client’s data. That said, in certain circum-
stances, gradients can leak client data regardless of the quality of the local model [7, 24, 13], so PAC
identifiability should be viewed as a sufficient, but not necessary, condition for data leakage.

4 Protocols and Attacks

We now discuss some specific communication protocols and corresponding attacks.

4.1 A Simple Protocol and Attack

To warm up, we consider the protocol outlined in Protocol 1. The server initiates updates by select-
ing a (random) subset of the available clients to execute the update (in parallel) on their respective
local data. Each selected client receives the current global model and updates its internal state; then,
performs R ≥ 0 rounds of SGD,3 with random batches of size B ≥ 1, sampled without replace-
ment from its labeled items, Sc.4 When finished, the client returns only the change in the global
model to the server. The server then aggregates the updates from all selected clients. Normally, the
server would iteratively execute this protocol with a random subset of available clients. However, a
malicious server may repeatedly target a single client or modify the server-side protocol.

Protocol 1 Federated Recommendation Communication Protocol
1: procedure SERVER
2: Select (random) subset of available clients, C′ ⊆ C
3: for c ∈ C′ in parallel do
4: {∆v

(c)
i }i∈I ← CLIENTUPDATE(c, {vi}i∈I , R)

5: ∀i ∈ I, vi ← vi +
∑
c∈C′ ∆v

(c)
i

6: procedure CLIENTUPDATE(c, {v(0)
i }i∈I , R)

7: ∀i ∈ I, vi ← v
(0)
i

8: for r = 1, . . . , R do
9: Sample B ⊆ Sc : |B| = B, uniformly at random, without replacement

10: gc ← 1
B

∑
i∈B∇ucL(uc,vi, yc,i)

11: ∀i ∈ B, vi ← vi − α∇viL(uc,vi, yc,i)
12: uc ← uc − αgc
13: return {vi − v

(0)
i }i∈I

We will show, by construction, that clients that execute the above client-side protocol are PAC
identifiable. To give some intuition of how the construction works, we use the chain rule to derive
the parameter gradients:

∇ucL(uc,vi, yc,i) = `′(yc,i uc · vi) yc,i vi (1)

and ∇vi
L(uc,vi, yc,i) = `′(yc,i uc · vi) yc,i uc, (2)

where `′(z) denotes the derivative of the auxiliary function, `. From this, we make two observations.
First, if all item vectors are zero, vi = 0, then the gradient with respect to uc is also zero; as such,
after only one update, the local model will not change. Second, we have that the gradient with
respect to vi is just uc scaled by some unknown value, si , `′(yc,i uc ·vi) yc,i. Given only the sign
of si, if si 6= 0, then

sgn(sgn(si)∇vi
L(uc,vi, yc,i) · vi) = sgn( |si|uc · vi) = sgn(uc · vi).

3If R = 0, then the SGD loop does not execute; this is equivalent to pushing the global model to the client
without forcing an update.

4We assume that available clients have collected at least as much data as the batch size.
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This identity enables a much stronger violation than just PAC identifiability; it enables perfect re-
construction (ε = 0). Of course, the sign of si is not known, because the sign of yc,i is unknown,
but we can leverage Assumptions 1 and 2 to infer the average value of si over all of the examples
used to compute the updates.
Theorem 1. Under Assumptions 1 and 2, we have that any client, c ∈ C, that faithfully executes
Protocol 1 is PAC identifiable, for ε = 0 and any δ ∈ (0, 1), using

T ≥ 2 ln(1/δ)

B(1− 2pc)2
interactions.

The proof uses the modified server-side protocol (i.e., attack) given in Protocol 2. For T rounds,
the server executes a single (R = 1) update on the client using a fake global model in which all
item vectors are set to zero. When finished, the server aggregates the returned updates and divides
by (α`′(0)TB) to obtain ûc, an estimate of the client’s local model. Finally, the server restores the
actual global model on the client by executing the update command with R = 0. This step is only
needed if the attacker wishes the client to function as before the attack.

Protocol 2 Server-side Attack
1: procedure SERVER
2: for t = 1, . . . , T do
3: {∆v

(t)
i }i∈I ← CLIENTUPDATE(c, {0}i∈I , 1)

4: ûc ← (α `′(0)TB)−1
∑T
t=1

∑
i∈I ∆v

(t)
i

5: CLIENTUPDATE(c, {vi}i∈I , 0) . (Optional) Restore global model on client

The attack works because ûc turns out to be the local model, scaled by the average of all the labels
used in the updates. By our assumption that the label distribution skews negative, the average of
labels should, with high probability, be negative. Thus, having determined the sign of the multiplier,
we can correct for it and obtain a correctly signed copy of the local model.

One interesting takeaway is that the number of required interactions decreases as the positive prefer-
ence rate, pc, approaches zero. If pc is representative of the user’s overall preference rate (e.g., if Sc
is an unbiased sample), then users with discriminating tastes are easier to identify. This is dangerous
because knowing their distinctive preferences may reveal very specific characteristics about them.

It is important to emphasize that Protocol 2 is only a theoretical construction designed to show the
existence of an attack. It is not intended to “fly under the radar.” Indeed, it is straightforward for
a client to detect such an attack. Regardless, if the client faithfully performs the communication
protocol, then the server can identify the local model.

4.2 Noisy Messages

Federated learning is typically paired with a differential privacy mechanism. The distributed nature
of federated learning is particularly well suited for local differential privacy, a form of differential
privacy that does not require a trusted third-party aggregator [18]. In local differential privacy,
a privacy mechanism is applied at each client. Typically, this amounts to adding noise to whatever
data is returned to the aggregator (e.g., statistics of the client’s local data). In the context of federated
learning, each client adds noise to the model updates it returns to the server [2].5

We therefore investigate whether adding noise to the update messages affects PAC identifiability. We
consider a modified client-side protocol in which the client returns a corrupted copy of the global
model update:

∆̃vi ,

{
vi − v

(0)
i + εi, with εi ∼ N (0, σ2I) if vi 6= v

(0)
i ,

0 if vi = v
(0)
i ,

(3)

where N (0, σ2I) is a k-dimensional, isotropic Gaussian, with variance σ2. Noise is only added for
items whose parameters have changed; this is designed to reduce unnecessary data transfer. With

5A client should also use gradient clipping to reduce the sensitivity of the model updates [1], but we will
ignore this detail for simplicity of exposition. One could always assume that gradients are naturally bounded.
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proper scaling of σ (and gradient clipping), this mechanism is differentially private. However, does
it prevent the local model from being PAC identified?

In the following, we show that the system is still PAC identifiable using the same attack as before.
The key to the attack’s success is that, averaged over multiple updates, the noise concentrates around
its mean, which is zero. Thus, since the noise is additive, the original update is eventually revealed.

Theorem 2. For c ∈ C and ε ∈ [0, 1], let τc(ε) denote the largest τ ≥ 0 such that
1
I

∑
i∈I 1{|uc · vi| ≤ τ} ≤ ε. Let M , maxi∈I ‖vi‖ denote the maximum magnitude of any

item vector. Under Assumptions 1 and 2, we have that any client, c ∈ C, that faithfully executes
Protocol 1 using the modified global model update message given in Equation 3 is PAC identifiable,
for any ε ∈ [0, 1], δ ∈ (0, 1) and β ∈ (0, 1− 2pc), using

T ≥ max

{
2 ln(2/δ)

B(1− 2pc − β)2
,

2σ2M2 ln(4I/δ)

B (αβ `′(0) τc(ε))
2

}
interactions.

We note that, though we assumed Gaussian noise in Equation 3, Theorem 2 holds for any sub-
Gaussian noise distribution.

4.3 SGD Without Replacement

The client-side protocol in Protocol 1 uses stochastic gradients, sampled with replacement between
batches, and runs for a given number of updates. We can also consider a variant that instead iterates
over the entire dataset for a given number of epochs (with shuffling before each epoch, if desired).
In this scenario, the attack in Protocol 2 is still effective—even more so, because the proportion
of positive labels used in an update is always the same. Provided we know which way the label
imbalance leans, we can correct the sign of the estimated user vector with probability one.

The modified protocol is given in Protocol 3 (see Appendix A.4). On the client side, the number of
updates, R, is determined by the number of epochs, E, the size of the data, N , and the batch size,
B (which we assume evenly divides N ). Since identifiability would be trivial without adding noise,
we use the noisy update messages from Equation 3. The only change on the server side is that it
executes CLIENTUPDATE using E instead of R.

Theorem 3. For c ∈ C and ε ∈ [0, 1], let τc(ε) denote the largest τ ≥ 0 such that
1
I

∑
i∈I 1{|uc · vi| ≤ τ} ≤ ε. Let M , maxi∈I ‖vi‖ denote the maximum magnitude of any

item vector. Under Assumptions 1 and 2, we have that any client, c ∈ C, that faithfully executes
Protocol 3 is PAC identifiable, for any ε ∈ [0, 1] and δ ∈ (0, 1), using

T ≥ 2σ2M2 ln(2I/δ)

N (α (1− 2pc) `′(0) τc(ε))
2 interactions. (4)

5 Discussion and Future Work

Though federated learning is a promising tool for personalization, there are still many privacy issues
to address. Differential privacy may be the de facto definition of privacy in machine learning—for
good reason—but we argue that PAC identifiability is equally compelling in the setting of federated
personalization. Hopefully, this paper will inspire more research in this direction.

Our PAC identifiability results demonstrate that certain protocols are vulnerable to simple attacks.
One could argue that our assumptions or protocols are overly simplistic, or that our attacks are easily
detectable. We do not dispute that more work is needed to relax our assumptions and accommodate
more realistic protocols; and we acknowledge that there may already be techniques (e.g., secure
multiparty computation [5]) that protect against PAC identifiability—certainly against our current
crude attacks. However, we conjecture that even more sophisticated techniques are vulnerable to
some attacks, and that it is just a matter of identifying the right attacks.

Finally, we stress that our goal is not to provide a blueprint for adversaries to violate users’ privacy.
To the contrary, our goal is to identify and raise awareness of these issues, so that they can be
addressed in future work.
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A Deferred Proofs

This appendix contains proofs deferred from the main manuscript.

A.1 Proof of Proposition 1

By the triangle inequality,

1{sgn(ûc · vi) 6= yc,i} ≤ 1{sgn(ûc · vi) 6= sgn(uc · vi)}+ 1{sgn(uc · vi) 6= yc,i}.

Averaging over i ∈ I completes the proof.

A.2 Proof of Theorem 1

Recall from Equation 1 that, when all vi are zero, the gradient with respect to uc is zero. Hence,
after R = 1 updates, uc will not have moved. Further, for every t ∈ {1, . . . , T} and i ∈ Bt (where
Bt denotes the tth batch), via Equation 2, we have that

∆v
(t)
i = −α∇vi

L(uc,vi, yc,i) = −α `′(yc,i uc · vi) yc,i uc = −α `′(0) yc,i uc,

where we have used the fact that uc · vi = 0 if vi = 0. We also have that ∆v
(t)
i = 0 for every

i /∈ Bt. Therefore,

ûc =
1

α `′(0)TB

T∑
t=1

∑
i∈I

∆v
(t)
i

=
1

α `′(0)TB

T∑
t=1

∑
i∈Bt

−α `′(0) yc,i uc

= uc

(
− 1

TB

T∑
t=1

∑
i∈Bt

yc,i

)
.

If a strict majority of preferences in (B1, . . . ,BT ) are negative, then

− 1

TB

T∑
t=1

∑
i∈Bt

yc,i > 0,

and ûc will be a positively-scaled copy of uc, thus enabling perfect reconstruction of the local
predictions.

Therefore, all that remains now is to show that, with high probability over draws of (B1, . . . ,BT ),
a majority of sampled preferences will be negative. For this, we will use Hoeffding’s inequality
[16]. Recall that each batch, Bt, is generated by sampling uniformly, without replacement, from
Sc (but items are replaced for each new batch). While Hoeffding’s inequality is typically stated for
independent draws from a distribution, it also holds for sampling with or without replacement from
a population (as a consequence of [16, Theorem 4]).

Lemma 1. Let X , {x1, . . . , xN} denote a finite population of N values such that ∀i, 0 ≤ xi ≤ 1.
Let (X1, . . . , Xn) denote a random sample drawn with or without replacement from X . Let µ ,
1
N

∑N
i=1 xi denote the population mean, and µ̂ , 1

n

∑n
i=1Xi denote the sample mean. Then, for

τ > 0,
Pr {µ̂ ≥ µ+ τ} ≤ exp(−2nτ2).

Thus, for pc = 1
N

∑
i∈Sc 1{yc,i > 0} < 1/2 (by Assumption 1) and

p̂c ,
1

TB

T∑
t=1

∑
i∈Bt

1{yc,i > 0}, (5)

9



we have that

Pr

{
− 1

TB

T∑
t=1

∑
i∈Bt

yc,i > 0

}
= Pr

{
p̂c <

1

2

}
= 1− Pr

{
p̂c ≥

1

2

}
= 1− Pr

{
p̂c ≥ pc +

(
1

2
− pc

)}
≥ 1− exp

(
−2TB

(
1

2
− pc

)2
)
.

Taking δ = exp(−2TB(1/2− pc)2) and solving for T completes the proof.

A.3 Proof of Theorem 2

We can again use the attack in Protocol 2, albeit with a different value of T .

Consider an arbitrary vector, v ∈ Rk. Because the noise model is additive, via linearity, we have
that

ûc · v =
1

α `′(0)TB

T∑
t=1

∑
i∈I

∆̃v
(t)
i · v

=
1

α `′(0)TB

T∑
t=1

∑
i∈Bt

(
∆v

(t)
i + ε

(t)
i

)
· v

=

(
− 1

TB

T∑
t=1

∑
i∈Bt

yc,i

)
uc · v︸ ︷︷ ︸

(a)

+
1

α `′(0)

(
1

TB

T∑
t=1

∑
i∈Bt

ε
(t)
i · v

)
︸ ︷︷ ︸

(b)

.

If |uc · v| > τc(ε), then conditions

− 1

TB

T∑
t=1

∑
i∈Bt

yc,i > β (6)

and

∣∣∣∣∣ 1

TB

T∑
t=1

∑
i∈Bt

ε
(t)
i · v

∣∣∣∣∣ < |αβ `′(0) τc(ε)| (7)

ensure that (a) has greater magnitude than (b), implying sgn(ûc · v) = sgn(uc · v). Let E1 denote
the event that Equation 6 holds. Letting E(i)

2 denote the event that Equation 7 holds for a specific
vi, we define E2 ,

∧
i∈I E

(i)
2 as the event that it holds for all i ∈ I. Since at most an ε fraction of

items have |uc · vi| ≤ τc(ε), the error rate will be at most ε with probability Pr{E1 ∧ E2}.
We therefore want to lower-bound Pr{E1 ∧ E2}. Using the fact that

Pr{E1 ∧ E2} = 1− Pr{¬E1 ∨ ¬E2} ≥ 1− Pr{¬E1} − Pr{¬E2},

10



we will upper bound Pr{¬E1} and Pr{¬E2} separately. The first probability can be bounded using
Hoeffding’s inequality (Lemma 1). Using our previous definition of p̂c (Equation 5), we have

Pr{¬E1} = Pr

{
− 1

TB

T∑
t=1

∑
i∈Bt

yc,i ≤ β

}

= Pr

{
p̂c ≥

1− β
2

}
= Pr

{
p̂c ≥ pc +

(
1− β

2
− pc

)}
≤ exp

(
−2TB

(
1− β

2
− pc

)2
)
. (8)

To bound Pr{¬E2}, first observe that each ε
(t)
i · v is an independent, normally distributed random

variable with mean 0 and variance σ2 ‖v‖2 ≤ σ2M2. Using elementary tail bounds for averages of
normally distributed random variables,

Pr

{∣∣∣∣∣ 1

TB

T∑
t=1

∑
i∈Bt

ε
(t)
i · v

∣∣∣∣∣ ≥ |αβ `′(0) τc(ε)|

}
≤ 2 exp

(
−TB (αβ `′(0) τc(ε))

2

2σ2M2

)
,

for any v ∈ Rk : ‖v‖ ≤M . Thus, taking a union bound over all i ∈ I,

Pr{¬E2} ≤
∑
i∈I

Pr
{
¬E(i)

2

}
≤ 2I exp

(
−TB (αβ `′(0) τc(ε))

2

2σ2M2

)
. (9)

Having upper-bounded both probabilities, we set the righthand sides of Equations 8 and 9 to δ/2,
then solve for the lower bound of T that satisfies each. We then have that Pr{¬E1} ≤ δ/2 if T ≥

2 ln(2/δ)
B(1−2pc−β)2 , and Pr{¬E2} ≤ δ/2 if T ≥ 2σ2M2 ln(4I/δ)

B(αβ `′(0) τc(ε))2
. The maximum of the lower bounds

for T ensures that both probabilities are upper-bounded, which means that Pr{E1 ∧ E2} ≥ 1− δ.

A.4 Proof of Theorem 3

Protocol 3 Communication Protocol Using SGD Without Replacement

1: procedure SERVER
2: Select (random) subset of available clients, C′ ⊆ C
3: for c ∈ C′ in parallel do
4: {∆v

(c)
i }i∈I ← CLIENTUPDATE(c, {vi}i∈I , E)

5: ∀i ∈ I, vi ← vi +
∑
c∈C′ ∆v

(c)
i

6: procedure CLIENTUPDATE(c, {v(0)
i }i∈I , E)

7: ∀i ∈ I, vi ← v
(0)
i

8: for e = 1, . . . , E do
9: Randomly split Sc into R , N/B disjoint batches, {Br}Rr=1, of size B

10: for r ∈ 1, . . . , R do
11: gc ← 1

B

∑
i∈Br
∇uc

L(uc,vi, yc,i)

12: ∀i ∈ Br, vi ← vi − α∇viL(uc,vi, yc,i)
13: uc ← uc − αgc
14: return {∆̃vi}i∈I per Equation 3

To account for changes in the client-side protocol, we use a slight modification of the attack in
Protocol 2. Like before, we call CLIENTUPDATE with the item vectors all set to zero, {0}i∈I ;
however, instead of using R = 1, we use E = 1. Further, we estimate the user vector as

ûc ←
1

α `′(0)T N

T∑
t=1

∑
i∈I

∆̃v
(t)
i

11



Note that it is easy to determine N based on which items are updated. Even if this number were
slightly perturbed, it would have little impact on identifiability. Also note that uc will not change
after one epoch, since each item vector is used in exactly one update and (via Equation 1) will
contribute zero to the gradient with respect to uc.

Similar to the proof of Theorem 2, we will show that, with enough interactions, the noise in ûc
averages out to zero (its mean). However, unlike Theorem 2, we do not have to reason about the
distribution of labels used in ûc, because it is always determined by pc.

For an arbitrary vector, v ∈ Rk, we have that

ûc · v =
1

α `′(0)T N

T∑
t=1

∑
i∈Sc

(
∆v

(t)
i + ε

(t)
i

)
· v

=
1

α `′(0)T N

T∑
t=1

∑
i∈Sc

(
−α `′(0) yc,i uc + ε

(t)
i

)
· v

= (1− 2pc)uc · v︸ ︷︷ ︸
(a)

+
1

α `′(0)

(
1

TN

T∑
t=1

∑
i∈Sc

ε
(t)
i · v

)
︸ ︷︷ ︸

(b)

.

If |uc · v| > τc(ε), then ∣∣∣∣∣ 1

TN

T∑
t=1

∑
i∈Sc

ε
(t)
i · v

∣∣∣∣∣ < |α (1− 2pc) `
′(0) τc(ε)| (10)

ensures that (a) has greater magnitude than (b), implying sgn(ûc ·v) = sgn(uc ·v). LetEi denote the
event that Equation 10 holds for vi. Then, since at most an ε fraction of items have |uc · vi| ≤ τc(ε),
the error rate will be at most ε with probability Pr{

∧
i∈I Ei}.

We lower-bound Pr{
∧
i∈I Ei} using the same proof technique we used for Theorem 2. Since

Pr
{∧

i∈I Ei
}
≥ 1 −

∑
i∈I Pr {¬Ei}, it suffices to upper-bound Pr {¬Ei}. The lefthand side

of Equation 10 is an absolute average of TN independent, zero-mean Gaussians, each with variance
upper-bounded by σ2M2. Thus, using standard Gaussian tail bounds,

Pr {¬Ei} ≤ 2 exp

(
−TN (α (1− 2pc) `

′(0) τc(ε))
2

2σ2M2

)
.

Summing over i ∈ I , then solving for T , we obtain Equation 4.
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