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Many important applications of artificial intelligence—such as image segmentation,
part-of-speech tagging and network classification—are framed as multiple, interdepen-
dent prediction tasks. These structured prediction problems are typically modeled using
some form of joint inference over the outputs, to exploit the relational dependencies. Joint
reasoning can significantly improve predictive accuracy, but it introduces a complication
in the analysis of structured models: the stability of inference. In optimizations involving
multiple interdependent variables, such as joint inference, a small change to the input or
parameters could induce drastic changes in the solution.

In this dissertation, I investigate the impact of stability in structured prediction. I
explore two topics, connected by the stability of inference. First, I provide generalization
bounds for learning from a limited number of examples with large internal structure.
The effective learning rate can be significantly sharper than rates given in related work.
Under certain conditions on the data distribution and stability of the predictor, the bounds
decrease with both the number of examples and the size of each example, meaning one
could potentially learn from a single giant example. Secondly, I investigate the benefits
of learning with strongly convex variational inference. Using the duality between strong
convexity and stability, I demonstrate, both theoretically and empirically, that learning
with a strongly convex free energy can result in significantly more accurate marginal
probabilities. One consequence of this work is a new technique that “strongly convexifies”
many free energies used in practice. These two seemingly unrelated threads are tied by the
idea that stable inference leads to lower error, particularly in the limited example setting,
thereby demonstrating that inference stability is of critical importance to the study and
practice of structured prediction.
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Chapter 1: Introduction

Many important applications of artificial intelligence involve reasoning about multiple

interdependent unknowns, which give the problem an inherent internal structure. Often,

structure can be exploited to improve accuracy or efficiency. A classic example of such a

problem is labeling the nodes of a graph, such as a social network or publication database.

Connected users tend to share similar traits, and papers typically cite related papers, so a

link between two users or documents suggests that they have the same label (Getoor and

Taskar, 2007). Structure need not be explicit; it can be imposed on a problem by assigning

semantics to proximity. For instance, when segmenting an image, pixels that are within

a certain neighborhood of each other are likely to belong to the same object (Anguelov

et al., 2005). Moreover, if the goal is scene understanding, one can use proximity of actors

to reason about their activities; if one actor is talking, a nearby actor is likely listening

(Khamis et al., 2012; London et al., 2013b).

These types of problems and approaches are broadly categorized as structured pre-

diction. Structured prediction problems are generally characterized by (learning) a map-

ping to an exponentially large output space, such as labelings of n points or parses of

length-n sentences. The output space is endowed with an implicit or explicit structure,

which is represented by a graph. Inference involves searching the output space to find
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the “best” assignment (usually, conditioned on some observations), by some measure,

or score, defined by the model. It is assumed that the scoring function does not readily

decompose over the individual assignments, meaning inference necessitates a global op-

timization (e.g., Pearl, 1988; Roth and Yih, 2005; Daumé, III et al., 2009). Indeed, in the

aforementioned examples, the relational dependencies (e.g., social links, citations, prox-

imities) prevent one from decomposing the joint optimization into a set of independent,

local optimizations.

Due to the collective nature of inference, perturbing the observations or model pa-

rameters, however slightly, may result in drastic changes to the predictions. As a result, a

performance measurement (i.e., loss function) of joint inference can have high variance.

Measuring this effect is the focus of stability analysis. In a general sense, an algorithm is

stable if small changes to its input induce proportionally small changes in its output. The

stability of learning algorithms has been shown to play a key role in how well they gen-

eralize from a finite training sample (Bousquet and Elisseeff, 2002). In this dissertation,

I explore the impact of inference stability in learning structured models.

One insight is that stability is particularly important when learning from examples

with large internal structure. In certain applications of structured prediction, each exam-

ple consists of many interdependent inputs and outputs. For instance, a document may

contain thousands of words to be assigned a part-of-speech tag; a digital image may con-

tain millions of pixels to be segmented; and a social network may contain millions of

users to be categorized. Obtaining fully annotated examples can be time-consuming and

expensive, due to the number of variables. It is therefore common to train a structured pre-

dictor using far fewer examples than are used in the unstructured setting. In the extreme
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(yet not atypical) case, the training set consists of a single example, with large internal

structure. The central message of my work is that inference stability leads to lower error,

which means that one can do more with fewer examples.

1.1 Contributions

My contributions are grouped into two topics, tied by the idea of stability. The first topic

concerns providing better theoretical guarantees for learning from a few large, structured

examples. The second topic investigates the benefits of strongly convex variational free

energies when learning with approximate inference. The common thread between these

seemingly disparate subjects is that the stability of inference influences the learning rate.

The first line of research demonstrates how stable inference can improve generalization

in the limited data setting; the second line proposes a criteria and method for promoting

stable inference, thereby improving the accuracy of the learned model.

The content of this dissertation is derived from research I led, and to which I was the

primary contributor. Certain portions have been published elsewhere (see London et al.,

2013a, 2014, 2015a).

1.1.1 Generalization Bounds for Learning from Limited Examples

A fundamental question in statistical learning theory is generalization; that is, whether the

expected error at test time will be reasonably close to the empirical error measured during

training. Canonical learning-theoretic results for structured prediction (e.g., Taskar et al.,

2004; Bartlett et al., 2005; McAllester, 2007) only guarantee generalization when the
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number of training examples is high. Yet, this pessimism contradicts a wealth of experi-

mental results (e.g., Taskar et al., 2002; Tsochantaridis et al., 2005), which indicate that

training on a few large examples is sufficient. In Chapters 5 and 6, I address the question

of when generalization is possible in this setting. I derive new generalization bounds for

structured prediction that are far more optimistic than previous results. When sufficient

conditions hold, these bounds guarantee generalization from a few large examples—even

just one.

The intuition behind the analysis is motivated by a common practice known alter-

natively as templating or parameter-tying. At a high level, templating shares parameters

across substructures (e.g., nodes, edges, etc.) with identical local structure. (Templating is

explained in detail in Section 2.3.3.) Originally proposed for relational learning as a way

of dealing with non-uniformly-structured examples, templating has an additional benefit

in that it effectively limits the complexity of the hypothesis class by reducing the number

of parameters to be learned. Each instance of a substructure within an example acts as

a kind of “micro example” of a template. Since each example may contain many micro

examples, it is plausible that generalization could occur from even a single example.

Part of the difficulty when formalizing this intuition is that the micro examples are

interdependent. Like all statistical arguments, generalization bounds must show that the

empirical error concentrates around the expected error, and analyzing the concentration of

functions of dependent random variables is nontrivial. Moreover, inference in a structured

predictor is typically formulated as a global optimization over all outputs simultaneously.

Due to model-induced dependencies, changes to one input may affect many of the out-

puts, which affects the loss differently than in binary or multiclass prediction. Thus, this
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problem cannot be viewed as simply learning from interdependent data, which has been

studied extensively (e.g., Usunier et al., 2006; Mohri and Rostamizadeh, 2010; Ralaivola

et al., 2010).

There are therefore two obstacles: the dependence in the data distribution and the

dependence induced by the the predictor. I characterize the former dependence using

concepts from measure concentration theory (Kontorovich and Ramanan, 2008), and I

view the latter dependence as the stability of inference. Chapter 5 reviews my earlier

work in this area (London et al., 2013a), which was based on the notion of collective

stability (see Section 3.2). Collectively stability isolates the stability of the predictions

from the stability of the loss function. The results of Chapter 5 use a uniform definition

of collective stability, which is guaranteed for predictors whose inference objectives are

strongly convex. In Chapter 6 (which presents work from London et al., 2015b), I use a

more general form of stability (see Section 3.1) that analyzes the loss function directly.

This definition of stability accommodates a broader range of loss functions and predictors,

and eliminates the previous reliance on strong convexity. Moreover, it supports functions

that are locally stable over some subset of their domain, and random functions that are

stable with high probability.1

The primary contributions of Chapters 5 and 6 are generalization bounds for struc-

tured prediction that decrease when either the number of examples, m, or the size of each

example, n, increase. Under suitable conditions on the data distribution, hypothesis class

and loss function, the bounds can be as tight as Õ (1/
√
mn), which decreases as either

1I introduced local, probabilistic versions of collective stability in 2014, though these will not be cov-
ered, since they are subsumed by the more general results from 2015b.
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m or n increase. This rate is much tighter than previous results, which only guarantee

Õ (1/
√
m). Chapter 5 uses an approach based on the collective stability and covering

number of the hypothesis class. Chapter 6 uses PAC-Bayesian analysis, which is partic-

ularly well suited for the probabilistic definitions of stability. These latter results apply

to any composition of loss function and hypothesis class that satisfies the local stability

conditions, which includes a broad range of modeling regimes used in practice. I also

propose a novel view of PAC-Bayesian “derandomization,” based on the principle of sta-

bility, which provides a general proof technique for converting a generalization bound for

a randomized structured predictor into a bound for a deterministic structured predictor.

To enable the PAC-Bayesian analysis, I derive a new bound on the moment-generating

function of a locally stable functional (see Section 4.2). This result implies a new tail in-

equality, which is used in the covering number-based analysis. The tightness of these

bounds (hence, the generalization bounds) hinges on a measure of the aggregate depen-

dence between the random variables within each example. The bounds are meaningful

when the dependence is sub-logarithmic in the number of variables. In Section 4.3, I

provide two examples of stochastic processes for which this condition holds. All of these

results may be of independent interest for those in the learning theory and measure con-

centration community.

I apply the generalization bounds to several common models and learning scenar-

ios, including posterior decoding, max-margin Markov networks and soft-max training of

conditional random fields. To demonstrate the benefit of local stability analysis, I also

consider a specific generative process that induces unbounded stability in certain predic-

tors, given certain inputs. These examples suggest several factors to be considered when
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modeling structured data, in order to obtain the fast generalization rate: (1) templating is

crucial; (2) the norm of the parameters contributes to the stability of inference, and should

be controlled via regularization; and (3) limiting local interactions in the model can im-

prove stability, hence, generalization. All of these considerations can be summarized by

the classic tension between representational power and overfitting, applied to the struc-

tured setting. Most importantly, these examples confirm that generalization from limited

training examples is indeed possible for many structured prediction techniques used in

practice.

1.1.2 Benefits of Learning with Strongly Convex Variational Inference

Though marginal inference in general graphical models is an intractable problem, many

approximations have been proposed using the variational free energy (see Section 2.3.2).

Much of this research has focused on the convexity of the free energy. When it is convex,

convergence to a global minimum is guaranteed. Less attention has been paid to when

the free energy is strongly convex (i.e., has curvature), and what benefits this offers. In

Chapter 7 (which presents work from London et al., 2015a), I show, both theoretically

and empirically, that learning with a strongly convex free energy results in more accurate

marginal probabilities.

My theoretical analysis is based on the stability of the marginals. The marginals of

a log-linear distribution (such as the one described in Section 2.3.1) form the gradient of

the log-partition function with respect to the potentials. Thus, one can characterize the

stability of the marginals by the Lipschitz constant of the gradient. The Lipschitz gradient
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condition (Hiriart-Urruty and Lemaréchal, 2001) is the dual of strong convexity. Using

this duality, and the variational form of the log-partition, I show that strongly convex free

energies result in more stable marginals. Further, I argue that a simply convex free en-

ergy cannot satisfy this stability guarantee. Finally, using the stability of the marginals, I

prove an error bound for the marginals of a model that is learned using strongly convex

variational inference. The error bound is inversely proportional to the modulus of con-

vexity (i.e., amount of curvature) of the free energy, thereby highlighting an important

consideration for strongly convex free energies: the modulus should be constant with re-

spect to the size of the graph, |G|, particularly when |G| is large relative to the number of

examples.

Based on the above insights, I proceed to identify free energies that are strongly

convex, and when their respective moduli of convexity are constant with respect to |G|. I

consider two popular variational methods: tree-reweighted (Wainwright et al., 2005) and

counting number (Heskes, 2006) entropies. Using the notion of contraction, I give model-

dependent conditions under which the negative tree-reweighted entropy is Ω(1)-strongly

convex. I then propose new sufficient conditions to characterize the modulus of convexity

for counting number entropies. I use this to derive a novel counting number optimization

that yields κ-strongly convex free energies, for any κ > 0, independent of the model

parameters. This optimization can “strongly convexify” any entropy approximation that

can be expressed via counting numbers, which includes many used in practice (e.g., Bethe

and tree-reweighted).

I demonstrate the practical impact of the theory in a set of experiments on chal-

lenging grid-structured models. The empirical results suggest that strongly convex free
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energies can dramatically improve the quality of marginal inference, and that the counting

number optimization reduces the error of learned marginals by over 40%. These findings

indicate that having a tunable modulus can offer substantial benefit in practice.

1.2 Related Work

One of the earliest explorations of generalization in structured prediction is by Collins

(2001), who developed risk bounds for language parsers using various classical tools,

such as the Vapnik-Chervonenkis dimension and margin theory. In Taskar et al.’s (2004)

landmark paper on max-margin Markov networks, the authors use covering numbers to

derive risk bounds for their proposed class of models. Bartlett et al. (2005) improved this

result using PAC-Bayesian analysis.2 McAllester (2007; 2011) provided a comprehen-

sive PAC-Bayesian study of various structured losses and learning algorithms. Recently,

Hazan et al. (2013) proposed a PAC-Bayes bound with a form often attributed to Catoni

(2007), which can be minimized directly using gradient descent. Giguère et al. (2013)

used PAC-Bayesian analysis to derive risk bounds for the kernel regression approach to

structured prediction. In a similar vein as the above literature, yet taking a significantly

different approach, Bradley and Guestrin (2012) derived finite sample complexity bounds

for learning conditional random fields using the composite likelihood estimator.

All of the above works have approached the problem from the traditional viewpoint,

that the generalization error should decrease proportionally to the number of examples.

In a previous publication (London et al., 2013a), I proposed the first bounds that decrease

2PAC-Bayesian analysis is often accredited to McAllester (1998, 1999), and has been refined by a num-
ber of authors (e.g., Langford and Shawe-Taylor, 2002; Seeger, 2002; Ambroladze et al., 2006; Catoni,
2007; Germain et al., 2009; Lever et al., 2010; Seldin et al., 2012).
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with both the number of examples and the size of each example (given suitably weak

dependence within each example). I later refined these results using PAC-Bayesian anal-

ysis (London et al., 2014). My more recent work (London et al., 2015b) builds upon this

foundation to derive similarly optimistic generalization bounds, while accommodating a

broader range of loss functions and hypothesis classes.

From a certain perspective, my work fits into a large body of literature on learn-

ing from various types of interdependent data. Most of this is devoted to “unstructured”

prediction. Usunier et al. (2006) and Ralaivola et al. (2010) used concepts from graph col-

oring to analyze generalization in learning problems that induce a dependency graph, such

as bipartite ranking. In this case, the training data contains dependencies, but prediction

is localized to each input-output pair. Similarly, Mohri and Rostamizadeh (2009, 2010)

derived risk bounds for φ-mixing and β-mixing temporal data, using an “independent

blocking” technique due to Yu (1994). The hypotheses they consider predict each time

step independently, which makes independent blocking possible. Since I am interested in

hypotheses (and loss functions) that perform joint inference, which may not decompose

over the outputs, I cannot employ techniques such as graph coloring and independent

blocking.

A related area of research is learning to forecast time series data. In this setting, the

goal is to predict the next (or, some future) value in the series, given (a moving window

of) previous observations. The generalization error of time series forecasting has been

studied extensively by McDonald et al. (e.g., 2012) in the β-mixing regime. Similarly,

Alquier and Wintenburger (2012) derived oracle inequalities for φ-mixing conditions.

The idea of learning from one example is related to the “one-network” learning
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paradigm, in which data is generated by a (possibly infinite) random field, with certain la-

bels observed for training. The underlying model is estimated from the partially observed

network, and the learned model is used to predict the missing labels, typically with some

form of joint inference. Xiang and Neville (2011) examined maximum likelihood and

pseudo-likelihood estimation in this setting, proving that are asymptotically consistent.

Note that this is a transductive setting, in that the network data is fixed (i.e., realized),

so the learned hypothesis is not expected to generalize to other network data. In con-

trast, I analyze inductive learning, wherein the model is applied to future draws from a

distribution over network data.

Connections between stability and generalization have been explored in various

forms. Bousquet and Elisseeff (2002) proposed the stability of a learning algorithm as a

tool for analyzing generalization error. This landmark work paved the way for a number of

related results (e.g., Kutin and Niyogi, 2002; Elisseeff et al., 2005; Mukherjee et al., 2006;

Cortes et al., 2008; Mohri and Rostamizadeh, 2010; Shalev-Shwartz et al., 2010). Taking

a significantly different approach, Wainwright (2006) analyzed the stability of marginal

probabilities in variational inference, identifying the relationship between stability and

strong convexity (similar to my work in London et al., 2013a, 2014, 2015a). He used this

result to show that an inconsistent estimator, which uses approximate inference during

training, can asymptotically yield lower regret (relative to the optimal Bayes least squares

estimator) than using the true model with approximate inference. In a another different,

yet related, work, Honorio (2011) showed that the Bayes error rate of various graphical

models is related to the stability of their log-likelihood functions with respect to changes

in the model parameters.
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The study of convex free energies in approximate inference has a long history. Ap-

proaches can be broadly categorized by their approximation of the negative entropy term.

Wainwright et al.’s (2005) tree-reweighted approximation decomposes the entropy into a

convex combination of tree entropies, each of which is convex. Wainwright (2006) later

showed that this approximation is in fact strongly convex, though his lower bound on

the modulus decreases as a function of the size of the graph. Another decomposition ap-

proach, due to Globerson and Jaakkola (2007), replaces the entropy with a sum of condi-

tional entropies. This approximation is provably convex, but not strongly convex. Heskes

(2006) proposed general sufficient conditions, based on counting (or, “over-counting”)

numbers, to establish the convexity of the Bethe and Kikuchi approximations. This work

inspired a wave of research in counting number-based approximations (e.g., Weiss et al.,

2007; Hazan and Shashua, 2008; Meltzer et al., 2009; Meshi et al., 2009). Hazan and

Shashua (2008) used a slight modification of Heskes’s conditions to guarantee strict con-

vexity, which guarantees a unique global minimum, but does not identify a modulus. To

my knowledge, the sufficient conditions I identify in Section 7.2.2 are the first to identify

when the counting number entropy is strongly convex, with a known modulus.

1.3 Organization

The remainder of this document is organized as follows.

• Chapter 2 introduces the notation and core concepts used throughout the paper, in-

cluding a review of probabilistic graphical models, variational inference and strong

convexity.
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• Chapter 3 introduces the concept of stability, beginning with a general definition

for a generic functional (e.g., the composition of a loss function and hypothesis),

followed by the more specific definition for collective stability, and concluding with

a discussion of related notions in the literature.

• Chapter 4 introduces the statistical quantities and identities used in my analysis, as

well as some examples of “nice” dependence conditions.

• Chapter 5 summarizes my early work in learning a structured predictor from limited

examples. I derive a generalization bound based on the collective stability and

covering number of the hypothesis class, then apply it to a class of predictors that

use strongly convex variational inference.

• Chapter 6 presents more recent bounds, using PAC-Bayesian analysis and local

stability. I apply these bounds to max-margin and soft-max learning of (conditional)

Markov random fields.

• Chapter 7 explores the connections between strongly convex free energies, stability

and the accuracy of learned marginal distributions. The theoretical insights of this

section result in a new technique that can “strongly convexify” a wide range of

variational free energies. Empirical results suggest that this approach can yield

significantly more accurate marginals in practice.

• Chapter 8 concludes the document with a review of the main results and directions

for future research.
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Chapter 2: Preliminaries

In this chapter, I introduce the core concepts covered in this document. I begin with nota-

tional conventions. I then define structured prediction and the learning setup. Following

this, I review some background on probabilistic graphical models, introducing the class

of templated Markov random fields that I will use throughout this document. Finally, I

review the concept of strong convexity, which will be used in Chapters 5 and 7.

2.1 Notational Conventions

Let X ⊆ Rk denote a domain of observations. Let Y denote a finite set of categorical

labels, represented by the standard basis (i.e., “one-hot”) vectors, {e1, . . . , e|Y|}. Let

Z , X × Y denote the cross product of the two.

For a graph G , (V , E), with nodes V , {1, . . . , n} and edges E , I will use

|G| , |V| + |E| to denote the total number of nodes and edges in G. I will sometimes

refer to this as the size of G.

Let Z , (Zi)
n
i=1 denote a set of random variables with joint distribution D on Zn. I

will denote realizations of Z by z ∈ Zn. I will use PrZ∼D{ · } to denote the probability of

an event over realizations of Z, distributed according to D. Similarly, I will use EZ∼D[ · ]

to specify an expectation over Z. When it is clear from context which variable(s) and dis-
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tribution the probability (or expectation) is taken over, I may omit the subscript notation.

I will occasionally employ the shorthand D(S) to denote the measure of a subset S ⊆ Zn

under D; i.e., D(S) = PrZ∼D{Z ∈ S}. With a slight abuse of notation, which should be

clear from context, I also use D(Zi:j |Σ) to denote the distribution of some subset of the

variables, (Zi, . . . , Zj), conditioned on a σ-algebra Σ.

2.2 Structured Prediction

At its core, structured prediction (sometimes referred to as structured output prediction

or structured learning) is about learning concepts that have a natural internal structure. In

the framework I consider, each example of the concept contains n interdependent random

variables, Z , (Zi)
n
i=1, with joint distribution D. Each Zi , (Xi, Yi) is an input-output

pair, taking values inZ = X ×Y .1 An example is associated with an implicit dependency

graph, G , (V , E), where V , {1, . . . , n}, and E captures the dependencies in Z. Unless

otherwise stated, assume that the edge structure is imposed by the modeler. The edge

structure may be obvious from context, or may be inferred beforehand. To simplify the

analysis, I assume that each example uses the same structure, and that it has been fixed a

priori.

The learning algorithm’s goal is to learn to predict Y , (Yi)
n
i=1, conditioned on

X , (Xi)
n
i=1. Let H ⊆ {h : X n → Yn} denote a class of hypotheses, where each

hypothesis possesses some internal representation. I am interested in hypotheses that

perform joint reasoning over all variables simultaneously, according to some prior knowl-

1To minimize bookkeeping, I have assumed a one-to-one correspondence between input and output
variables, and that the Zi variables have identical domains, but these assumptions can be relaxed.
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edge about the structure of the data. I therefore assume that computing h(X) implicitly

involves a global optimization that does not decompose over the outputs, due to depen-

dencies. Note that I do not assume that the data is generated according to some target

concept inH. Indeed,H may be misspecified.

Predictors are evaluated using a loss function of the form L : H × Zn → R+,

where L may have access to the internal representation of h. For a loss function L and

hypothesis h, denote the average loss on a set of m structured examples, Ẑ , (Z(l))ml=1,

by

L̂(h, Ẑ) ,
1

m

m∑
l=1

L(h,Z(l)).

Most training algorithms minimize (an upper bound on) the empirical loss, so if h? is

the learned hypothesis, then L̂(h, Ẑ) indicates of how well h? fit the training data. Let

L(h) , EZ∼D[L(h,Z)] denote the expected loss (also known as the risk) over realizations

of a single example Z. This quantity corresponds to the error h will incur on future

predictions.

The goal of generalization analysis is to bound the difference of the expected and

empirical loss measures, L(h)− L̂(h, Ẑ). I will refer to this quantity as the generalization

error.2 Given a learned hypothesis, with empirical loss L̂(h, Ẑ), a generalization bound

provides an upper bound on the expected loss, L(h).

2This definition of generalization error differs from some literature, in which the term is used to refer to
the expected loss.
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2.3 Probabilistic Graphical Models

Arguably, most models used for structured prediction can be viewed as probabilistic

graphical models (PGMs). A PGM is a statistical model in which the conditional inde-

pendence structure is represented by a graph. I will focus on a popular class of undirected3

PGMS known as Markov random fields (MRFs). MRFs generalize many models used in

practice, such as (relational) Markov networks (Taskar et al., 2002), conditional random

fields (Lafferty et al., 2001), and Markov logic networks (Richardson and Domingos,

2006).

2.3.1 Markov Random Fields

Recall that each example is associated with a dependency graph, G , (V , E). In this

case, the edge set is assumed to be undirected. The parameters of an MRF are organized

according to the cliques (i.e., complete subgraphs), C, contained in G. For each clique,

c ∈ C, there is an associated real-valued potential function, θc(y; w), parameterized by

a vector of weights, w ∈ Rd, for some d ≥ 1. This function indicates the score for Yc

being in state yc. The potentials define a log-linear probability distribution,

p (Y = y; w) , exp

(∑
c∈C

θc(y; w)− Φ(w)

)
,

3This does not limit the applicability of my work, since there exists a straightforward conversion from
directed PGMs to undirected PGMs (Koller and Friedman, 2009).
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where

Φ(w) , ln
∑

y′∈Yn
exp

(∑
c∈C

θc(y
′; w)

)

is a normalizing function known as the log-partition. The potential functions may ad-

ditionally be conditioned on the observation X = x, in which case they are denoted by

θc(y |x; w), and

p (Y = y |X = x; w) , exp

(∑
c∈C

θc(y |x; w)− Φ(x; w)

)
.

Since the label space, Y , is represented by the standard basis vectors, the joint state

of a clique c is represented by a vector, yc =
⊗

i∈c yi, of length |Yc| , |Y||c|. With a slight

abuse of notation, I overload the potential functions so that θc(w) ∈ R|Yc| (alternatively,

θc(x; w) ∈ R|Yc|) denotes a vector of potentials, and

θc(y; w) = θc(w) · yc.

Thus, with

θ(w) , (θc(w))c∈C and ŷ , (yc)c∈C ,

we have that ∑
c∈C

θc(y; w) = θ(w) · ŷ.

I refer to ŷ as the full representation of y. To reduce clutter, I will sometimes denote the

potentials, θ(w) or θ(x; w), by simply θ, and denote the distribution under θ by p(Y;θ).
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2.3.2 Inference

The canonical inference problems for MRFs are maximum a posteriori (MAP) inference,

which computes the mode of the distribution, and marginal inference, which computes the

marginal distribution of a subset of the variables. In general, both tasks are intractable—

MAP inference is NP-hard and marginal inference is #P-hard (Roth, 1996)—though there

are some useful special cases for which inference is tractable, and many approximation

algorithms for the general case.

One class of approximate inference techniques uses a well-known variational form

of the log-partition function:

Φ(θ) = max
µ∈M

θ · µ− Φ∗(µ), (2.1)

where M is the marginal polytope—the set of all consistent marginal vectors—and Φ∗

is the convex conjugate of Φ. For any µ ∈ M, there is a corresponding distribution, pµ,

such that µc ·yc = pµ(Yc = yc) for each clique, c ∈ C, and clique state, yc. In the model

I consider, Φ∗(µ) is equal to the negative entropy of pµ.4 The negative of the quantity

being maximized is often referred to as the free energy,

E(µ;θ) , −θ · µ + Φ∗(µ). (2.2)

The gradient of Φ(θ) is the maximizing µ (i.e., minimizer of E), which corresponds to

4I omit some details of the conjugate function for simplicity of exposition. See Wainwright and Jordan
(2008) for a precise definition.
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the marginal distributions of Y1, . . . , Yn. I denote this by

µ(θ) , arg min
µ∈M

E(µ;θ) = ∇Φ(θ). (2.3)

Each vertex ofM corresponds to a full labeling, ŷ. If one removes the conjugate function

from the free energy, then the inference objective is a linear function ofM. The minimizer

of this function is a vertex ofM, so minimizing the free energy without Φ∗ is equivalent

to MAP inference.

Unfortunately, for general graph structures,M may require an exponential number

of constraints, and Φ∗ is difficult to compute. Many variational methods address these

problems by relaxing M to an outer bound that uses a polynomial number of “local”

constraints, and replacing Φ∗ with a tractable approximation, Φ̃∗. The local marginal

polytope, M̃ ⊇M, is typically defined as follows:

M̃ ,

µ̃ :
∀v ∈ V , ∑|Y|j=1 µ̃

j
v = 1 ;

∀e ∈ E , ∀v ∈ e, ∑|Y|i=1 µ̃
ij
e = µ̃jv

 . (2.4)

We call each µ̃ ∈ M̃ a set of pseudomarginals. With a slight abuse of notation, let

Ẽ(µ̃;θ) , −θ · µ̃ + Φ̃∗(µ̃)

denote a variational free energy for Φ̃∗ and M̃, let Φ̃(θ) , maxµ̃∈M̃−Ẽ(µ̃;θ) denote
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the convex conjugate of Φ̃∗ (i.e., the approximate log-partition), and let

µ̃(θ) , arg min
µ̃∈M̃

Ẽ(µ̃;θ) = ∇Φ̃(θ) (2.5)

denote the pseudomarginals of the variational distribution,

p̃(Y = y;θ) , exp
(
θ · ŷ − Φ̃(θ)

)
. (2.6)

To perform approximate MAP inference, one removes Φ̃∗ from the inference objective.

Since M̃ is an outer bound on M, this approximation may result in fractional solu-

tions (Wainwright and Jordan, 2008). When this happens, the fractional solution can

be rounded to the nearest integral solution by selecting the highest scoring label for each

node.

A related form of inference is posterior decoding. Posterior decoding selects the la-

beling that maximizes the marginal probability at each node. Given a vector of (pseudo)marginals,

µ, from (approximate) marginal inference, one decodes the label for node v as yv ,

arg maxy∈Y y · µv. (This formula assumes a basis vector representation of Y .) Poste-

rior decoding is more robust to outliers than MAP inference because it maximizes the

expected per-label accuracy rather than the accuracy of the joint labeling (Gross et al.,

2006).
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2.3.3 Templating

An important property of the above construction is that the same vector of weights, w, is

used to parameterize all of the potential functions. One could imagine that w contains a

unique subvector, wc, for every clique. However, one could also bin the cliques by a set

of templates—such as singletons (nodes), pairs (edges) or triangles (hyperedges)—then

use the same weights for each template. This technique is alternatively referred to as

templating or parameter-tying.

With templating, one can define general inductive rules to reason about datasets

of arbitrary size and structure. Because of this flexibility, templating is used in many

relational models, such as relational Markov networks (Taskar et al., 2002), relational de-

pendency networks (Neville and Jensen, 2004), and Markov logic networks (Richardson

and Domingos, 2006).

A templated model implicitly assumes that all groundings (i.e., instances) of a tem-

plate should be modeled identically, meaning location within the graph is irrelevant. A

non-templated model is location-aware and therefore has higher representational power.

However, without templating, the dimensionality of w scales with the number of cliques;

whereas, with templating, the dimensionality of w is constant. Thus, we find the classic

tension between representational power and overfitting. To mitigate overfitting, one must

restrict model complexity. Yet, too little expressivity will hamper predictive performance.

This consideration is critical to the application of our generalization bounds.

In practice, templated models typically consist of unary and pairwise templates. I

will refer to these as pairwise models. Higher-order templates can capture certain induc-
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tive rules that pairwise models cannot. For example, for a binary relation r, the transitive

closure r(A,B) ∧ r(B,C) =⇒ r(A,C) requires triadic templates. Rules like this are

sometimes used for link prediction and entity resolution. Of course, this additional ex-

pressivity comes at a cost, as will become apparent later.

2.3.4 Defining the Potential Functions

In this section, I describe a common formulation of the potential functions based on sim-

ple, multilinear functions of (w,x,y). Assume that each node i has local observations

xi ∈ X and label yi ∈ Y . Define a vector of local features,

fi(x,y) , xi ⊗ yi, (2.7)

using the Kronecker product (since yi is a standard basis vector). Similarly, for each edge

{i, j} ∈ E , let

fij(x,y) ,
1

2

xi
xj

⊗ (yi ⊗ yj). (2.8)

Here, I have defined the edge features using a concatenation of the local observations,

though this need not be the case. In general, the edge features can be arbitrary functions

of the observations, such as kernels or similarity functions. Or, one could eschew the

observations altogether and just use yi ⊗ yj , which is typical in practice.

The potential functions are then defined as weighted feature functions. For the

following, I will assume that the weights are templated, as described in Section 2.3.3.

The node features are associated with a set of singleton weights, ws ∈ Rds , and the edge
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features with a set of pairwise weights, wp ∈ Rdp , where ds and dp denote the respective

lengths of the feature vectors. Then,

θi(y |x; w) , ws · fi(x,y) and θij(y |x; w) , wp · fij(x,y);

and, with

w ,

ws

wp

 and f(x,y) ,


∑

i∈V fi(x,y)∑
{i,j}∈E fij(x,y)

 ,
we have that

θ(x; w) · ŷ = w · f(x,y).

Using this parameterization of the potentials, one obtains two key technical lemmas,

which will be used later on. These are deferred to Appendix A.

2.4 Strong Convexity

Various results in this document rely on the concept of strong convexity. The following is

the most general definition.

Definition 1. A function, ϕ : S → R, of a convex set, S, is κ-strongly convex with respect

to a norm5, ‖ · ‖, if and only if, for all s, s′ ∈ S and τ ∈ [0, 1],

τ(1− τ)
κ

2
‖s− s′‖2

+ ϕ(τs+ (1− τ)s′) ≤ τϕ(s) + (1− τ)ϕ(s′).

The modulus of convexity, κ, measures the curvature of ϕ.

5Unless specified, assume strong convexity with respect to the 2-norm.
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Differentiable functions have the following simplified definition.

Definition 2. A differentiable function, ϕ : S → R, of a convex set, S, is κ-strongly

convex with respect to a norm, ‖ · ‖, if and only if, for all s, s′ ∈ S,

κ

2
‖s− s′‖2

+ 〈∇ϕ(s), s′ − s〉 ≤ ϕ(s′)− ϕ(s).

Strong convexity of can be characterized in a number of ways. The following facts

provide some conditions that are equivalent to Definition 2.

Fact 1. A differentiable function, ϕ : S → R, of a convex set, S , is κ-strongly convex

w.r.t. a norm, ‖ · ‖, if and only if, for all s, s′ ∈ S,

κ ‖s− s′‖2 ≤ 〈∇ϕ(s)−∇ϕ(s′), s− s′〉 .

Fact 2. A twice-differentiable function, ϕ : S → R, of a convex set, S, is κ-strongly

convex w.r.t. a norm, ‖ · ‖, if and only if, for all s, s′ ∈ S,

κ ‖s‖2 ≤
〈
s,∇2ϕ(s′) s

〉
.

For the 2-norm, Fact 5 means that the minimum eigenvalue of the Hessian is lower-

bounded by κ.

One convenient property of a strongly convex function is that one can upper-bound

the squared distance between the minimizer and any other point in the domain by a func-

tion of the difference between their respective evaluations. This identity is illustrated in
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Figure 2.1, and formalized in the following lemma.

Lemma 1. Let ϕ : S → R be κ-strongly convex, and let ṡ , arg mins∈S ϕ(s). Then, for

any s ∈ S,

‖s− ṡ‖2 ≤ 2

κ
(ϕ(s)− ϕ(ṡ)) .

Proof Let ∆s , s− ṡ. By Definition 1, for any τ ∈ [0, 1],

κ

2
τ(1− τ) ‖∆s‖2 + ϕ(ṡ+ τ∆s)− ϕ(ṡ) ≤ τ (ϕ(s)− ϕ(ṡ)) .

Since ṡ is the unique minimizer of ϕ, it follows that ϕ(ṡ+ τ∆s)−ϕ(ṡ) ≥ 0; so the above

inequality is preserved when this term is dropped. Then, dividing both sides by τκ/2, we

have that

(1− τ) ‖∆s‖2 ≤ 2

κ
(ϕ(s)− ϕ(ṡ)) .

Since this holds for all τ ∈ [0, 1], it holds for τ = 1, which completes the proof.
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sṡ ‖s− ṡ‖

ϕ(s)− ϕ(ṡ)

‖s− ṡ‖2 ≤ 2

κ
(ϕ(s)− ϕ(ṡ))

Figure 2.1: Illustration of Lemma 1. For a κ-strongly convex function, ϕ : S → R, the
squared distance between the minimizer, ṡ, and any other point, s ∈ S, is upper-bounded
by 2

κ
(ϕ(s)− ϕ(ṡ)).

Chapter 3: Stability

A key component of my analysis is the stability of inference. Broadly speaking, stability

ensures that changes to the input result in proportional changes in the output. In structured

prediction, where inference is typically a global optimization over many interdependent

variables, changing any single observation may affect many of the inferred values. The

structured loss functions I consider implicitly require some form of joint inference; there-

fore, their stability is nontrivial. In this chapter, I introduce some definitions of stability
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and relate them to other forms found in the literature.

All of the following definitions will make use of the Hamming distance. For vectors

z, z′ ∈ Zn, denote their Hamming distance by

DH(z, z′) ,
n∑
i=1

1{zi 6= z′i}.

3.1 A General Definition of Stability

In this section, I introduce definitions of stability for functionals; i.e., functions that map

multiple inputs to a single scalar output. Loss functions are examples of functionals. The

following definitions will be stated in terms of an arbitrary class of functionals, F , {ϕ :

Zn → R}.

The simplest form of stability is the uniform condition, in which stability must hold

uniformly over all inputs.

Definition 3. A function ϕ ∈ F is β-uniformly stable if, for any inputs z, z′ ∈ Zn,

|ϕ(z)− ϕ(z′)| ≤ β DH(z, z′). (3.1)

Similarly, the class F is β-uniformly stable if every ϕ ∈ F is β-uniformly stable.

Put differently, a uniformly stable function is Lipschitz under the Hamming norm.

Uniform stability over the entire domain can be a strong requirement. Sometimes,

stability only holds for a certain subset of inputs, such as points contained in a Euclidean

ball of a certain radius. I refer to the set of inputs for which stability holds as the “good”
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set; all other inputs are “bad.” The precise meaning of good and bad depends on the

hypothesis class. Given some delineation of good and bad, one obtains the following

localized notion of stability.

Definition 4. For a subset BZ ⊆ Zn, a function ϕ ∈ F is (β,BZ)-locally stable if

Equation 3.1 holds for all z, z′ /∈ BZ . The class F is (β,BZ)-locally stable if every

ϕ ∈ F is (β,BZ)-locally stable.

Definition 4 has an alternate probabilistic interpretation. If D is a distribution on Zn, then

β-uniform stability holds with some probability over draws of z, z′ ∼ D. If the bad set BZ

has measure D(BZ) ≤ ν, then (β,BZ)-local stability is similar to, though slightly weaker

than, the strongly difference-bounded property proposed by Kutin (2002). If ϕ is strongly

difference-bounded, then Equation 3.1 must hold for any z /∈ BZ and z′ ∈ Zn (which

could be in BZ). All functions that are strongly difference-bounded are locally stable, but

the converse is not true.

The notion of probabilistic stability can be extended to distributions on the function

class. For any stability parameter β (and bad inputs BZ), the function class is partitioned

into functions that satisfy Equation 3.1, and those that do not. Therefore, for any distri-

bution Q on F , uniform (or local) stability holds with some probability over draws of

ϕ ∼ Q. This idea motivates the following definition.

Definition 5. Fix some β ≥ 0 and BZ ⊆ Zn, and let BF ⊆ F denote the subset of

functions that are not (β,BZ)-locally stable. A distribution Q on F is (β,BZ , η)-locally

stable if Q(BF) ≤ η.

Note the taxonomical relationship between these definitions. Definition 3 is the
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strongest condition, since it implies Definitions 4 and 5. Clearly, if F is β-uniformly

stable, then it is (β, ∅)-locally and (β, ∅, 0)-locally stable. Definition 4 extends Defini-

tion 3 by accommodating broader domains. Definition 5 extends this even further, by

accommodating classes in which only some functions satisfy local stability.

Stability analyzes the sensitivity of a function (or class) to single variable pertur-

bations. A related property is its sensitivity to changes in any of the variables, which we

formalize in the following.

Definition 6. A function ϕ ∈ F is α-uniformly range-bounded if, for any z, z′ ∈ Zn,

|ϕ(z)− ϕ(z′)| ≤ α.

I will use this as a “fall-back” property for when stability does not hold.

3.2 Collective Stability

My first generalization bounds for structured prediction (London et al., 2013a) crucially

rely on a property I referred to as uniform collective stability. Whereas the previous defi-

nitions of stability apply to functionals (multiple inputs, scalar output), collective stability

applies to vector-valued functions (multiple inputs, multiple outputs). Collective stability

measures the stability of the predictor. The following definition is for the uniform case.1

Definition 7. A class of vector-valued functions, G ,
{
g : Zn → RN

}
, has β-uniform

1Non-uniform definitions of collective stability have been proposed (London et al., 2014), but they will
not be used in this document.
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collective stability if, for any g ∈ G, and any z, z′ ∈ Zn,

‖g(z)− g(z′)‖1 ≤ β DH(z, z′).

I later relaxed this requirement to various non-uniform definitions of collective sta-

bility (London et al., 2014). The results presented in this document will only use the

uniform definition.

3.3 Connections to Other Notions of Stability

In the learning theory literature, the word “stability” has traditionally been associated

with a learning algorithm, rather than an inference algorithm. A learning algorithm is

said to be stable with respect to a loss function if the loss of a learned hypothesis varies

by a bounded amount upon replacing (or deleting) examples from the training set. This

property has been used to derive generalization bounds (e.g., Bousquet and Elisseeff,

2002), in the same way I use stability of inference.

My definitions of stability should also be contrasted with sensitivity analysis. Since

the terms are often used interchangeably, I distinguish the two as follows: stability mea-

sures the amount of change induced in the output of a function upon perturbing its input

within a certain range, and sensitivity analysis measures the amount of perturbation one

can apply to the input such that its output remains within a certain range. By these def-

initions, one is the dual of the other. In the context of probabilistic inference, sensitivity

analysis has been used to determine the maximum amount one can perturb the model

parameters (or evidence) such that the likelihood of a query stays within a given toler-
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ance, or such that the most likely assignment does not change (Chan and Darwiche, 2005,

2006). Stability measures how much the likelihood or most likely assignment changes.
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Chapter 4: Statistical Tools

Before presenting the generalization bounds, I will review some supporting definitions

and introduce a new moment-generating function inequality for locally stable functions of

interdependent random variables. This inequality will be used in the PAC-Bayes bounds

(Chapter 6). It can also be used to derive a concentration inequality for uniformly stable

functions, which will be used in the covering number-based bounds (Chapter 5). I con-

clude this section with some example conditions under which the dependence is bounded

(Section 4.3), thereby supporting improved generalization bounds.

4.1 Dependency Matrix

The main results of this section leverage a data structure that quantifies dependence be-

tween random variables. Let π be a permutation of [n] , {1, . . . , n}, where π(i) denotes

the ith element in the sequence and π(i : j) denotes a subsequence of elements i through

j. Used to index variables Z , (Zi)
n
i=1, denote by Zπ(i) the ith variable in the permutation

and Zπ(i:j) the subsequence (Zπ(i), . . . , Zπ(j)).

Definition 8. A sequence of permutations π , (πi)
n
i=1 is a filtration if, for i = 1, . . . , n−

1,

πi(1 : i) = πi+1(1 : i).
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Let Π(n) denote the set of all filtrations for a given n.

For probability measures P and Q on a σ-algebra, Σ, the total variation distance is

‖P−Q‖TV , sup
A∈Σ
|P(A)−Q(A)| .

To clarify notation of suprema (or infima) over Z , when probabilities are conditioned on

Σ, I will occasionally write ZΣ to denote the subset of Z that is consistent with Σ.

Definition 9. Fix a filtration π ∈ Π(n) and a σ-algebra Σ on Zn. For i ∈ [n], j > i,

z ∈ Z i−1 and z, z′ ∈ Z , define the ϑ-mixing coefficients1 as

ϑπ
ij(z, z, z

′) ,
∥∥D (Zπi(j:n) |Σ,Zπi(1:i) = (z, z)

)
− D

(
Zπi(j:n) |Σ,Zπi(1:i) = (z, z′)

)∥∥
TV
,

where it is assumed that Zπi(1:i) = (z, z) and Zπi(1:i) = (z, z′) are consistent with Σ.

These coefficients define an upper-triangular dependency matrix Γπ
Σ ∈ Rn×n, with entries

γπij ,



1 for i = j,

supz∈Zi−1
Σ

z,z′∈ZΣ

ϑπ
ij(z, z, z

′) for i < j,

0 for i > j.

When Σ is the full σ-algebra of Z, I will simply omit the subscript notation.

The bounds in the following sections will use the induced matrix infinity norm of

1The ϑ-mixing coefficients were introduced by Kontorovich and Ramanan (2008) as η-mixing and are
related to the maximal coupling coefficients used by Chazottes et al. (2007).
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Γπ
Σ, denoted

‖Γπ
Σ‖∞ , max

i∈[n]

n∑
j=1

∣∣γπij∣∣ ,
to measure the aggregate dependence in the distribution. Observe that, if Z1, . . . , Zn are

mutually independent, then Γπ
Σ is the identity matrix and ‖Γπ

Σ‖∞ = 1.

The ordering of the variables in each row of Γπ
Σ can have a strong impact on ‖Γπ

Σ‖∞.

Since we do not assume that Z corresponds to a temporal process, there may not be any

natural ordering of the variables. In general, given an arbitrary graph topology, ‖Γπ
Σ‖∞

measures the decay of dependence over graph distance. For example, for a Markov tree

process, Kontorovich (2012) orders the variables via a breadth-first traversal from the

root; for an Ising model on a lattice, Chazottes et al. (2007) order the variables with a

spiraling traversal from the origin. Both these instances use a static permutation, not a fil-

tration. Nonetheless, under suitable contraction or temperature regimes, the authors show

that ‖Γπ
Σ‖∞ is bounded independently of n (i.e., ‖Γπ

Σ‖∞ = O(1)). By exploiting filtra-

tions, one can show that the same holds for Markov random fields of any bounded-degree

structure, provided the distribution exhibits suitable mixing. I discuss these conditions in

Section 4.3.

4.2 Statistical Inequalities

With the supporting definitions in mind, I now present a new moment-generating function

inequality. The proof is provided in Appendix B.3.

Proposition 1. Let Z , (Zi)
n
i=1 be random variables with joint distribution D on Zn.

Let BZ ⊆ Zn denote a set of “bad” inputs. Let B denote the σ-algebra corresponding to
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Z /∈ BZ . Let ϕ : Zn → R be a measurable function with (β,BZ)-local stability. Then,

for any τ ∈ R and filtration π ∈ Π(n),

E
Z∼D

[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤ exp

(
τ 2

8
nβ2

∥∥Γπ
B

∥∥2

∞

)
.

This result builds on work by Samson (2000), Chazottes et al. (2007) and Kon-

torovich and Ramanan (2008). My analysis differs from theirs in that I accommodate

functions that are not uniformly stable. In this respect, my analysis is similar to that of

Kutin (2002) and Vu (2002), though these works assume independence between vari-

ables. Because I allow interdependence—as well as other technical challenges, related to

the definitions of local stability—I do not use the same proof techniques as the aforemen-

tioned works.

Proposition 1 yields a novel concentration inequality for uniformly stable functions

of interdependent random variables. The proof is given in Appendix B.4.

Corollary 1. Let Z , (Zi)
n
i=1 be random variables with joint distribution D on Zn, and

let ϕ : Zn → R be a measurable function. If ϕ is β-uniformly stable, then, for any ε > 0

and π ∈ Π(n),

Pr {ϕ(Z)− E[ϕ(Z)] ≥ ε} ≤ exp

(
−2ε2

nβ2 ‖Γπ‖2
∞

)
.

Corollary 1 extends some current state-of-the-art results (e.g., Kontorovich and Ra-

manan, 2008, Theorem 1.1) by supporting filtrations of the mixing coefficients. Further,

when Z1, . . . , Zn are mutually independent (i.e., ‖Γπ‖∞ = 1), one recovers McDiarmid’s
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inequality.

4.3 Bounded Dependence Conditions

The infinity norm of the dependency matrix, Γπ
Σ, has a trivial upper bound, ‖Γπ

Σ‖∞ ≤ n.

However, we are interested in bounds that are sub-logarithmic in n. In this section, I

describe some general settings in which ‖Γπ
Σ‖∞ has a nontrivial upper bound. For the

remainder of this section, fix a graph, G , (V , E), for the data distribution. For any two

subsets, S, T ⊆ V , define their graph distance, DG(S, T ), as the length of the shortest

path from any node in S to any node in T . I will use the following notion of distance-

based dependence.

Definition 10. For a random field Z on a graph G, with distribution D, and a σ-algebra Σ

on Zn, define the distance-based ϑ-mixing coefficients as

ϑ(k) , sup
S⊆V, i∈S

T ⊆V\S:DG(i,T )≥k
z∈Z|S|−1

Σ , z,z′∈ZΣ

‖D (ZT |Σ,ZS = z, Zi = z)− D (ZT |Σ,ZS = z, Zi = z′)‖TV ,

where ϑ(0) , 1.

The distance-based ϑ-mixing coefficients upper-bound the maximum influence ex-

erted by any subset of the variables on any other subset that is separated by graph distance

at least k. The sequence (ϑ(0), ϑ(1), ϑ(2), . . .) roughly measures how dependence decays

with graph distance. Note that ϑ(k) uniformly upper-bounds ϑπ
ij when DG(πi(i), πi(j :
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n)) ≥ k. Therefore, for each upper-triangular entry of Γπ
Σ, we have that

γπij ≤ ϑ (DG (πi(i), πi(j : n))) .

Proposition 2. Let Z be a random field on a graph G, with maximum degree ∆G. For

any positive constant ε > 0, if Z admits a distance-based ϑ-mixing sequence such that,

for all k ≥ 1, ϑ(k) ≤ (∆G + ε)−k, then there exists a filtration π such that

‖Γπ
Σ‖∞ ≤ 1 + ∆G/ε.

The proof is provided in Appendix B.5.

Uniformly geometric distance-based ϑ-mixing may seem like a restrictive condi-

tion. However, the analysis is overly pessimistic, in that it ignores the structure of the

random field beyond simply the maximum degree of the graph. Further, it does not take

advantage of the actual conditional independencies present in the distribution. Neverthe-

less, for Markov random fields, there is a natural interpretation to the above conditions

that follows from considering the mixing coefficients at distance 1: for the immediate

neighbors of a node—i.e., its Markov blanket—its ϑ-mixing coefficient must be less than

1/∆G. This loosely means that the combination of all incoming influence must be less

than 1, implying that there is sufficiently strong influence from local observations.

Another important setting is when the graph is a chain. Chain-structured stochastic

processes (usually temporal) under various mixing assumptions have been well-studied

(see Bradley, 2005 for a comprehensive survey). It can be shown that any contracting
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Markov chain has ‖Γπ
Σ‖∞ = O(1) (Kontorovich, 2012). Here, I provide an alternate

condition, using distance-based ϑ-mixing, under which the dependency matrix of a chain

has suitably low norm. The key property of a chain is that the number of nodes at distance

k from any starting node is constant. One can therefore relax the assumption of geometric

decay used in the previous result.

Proposition 3. Let Z be a chain-structured random field, of length n. For any constants

ε > 0 and p ≥ 1, if Z admits a distance-based ϑ-mixing sequence such that, for all k ≥ 1,

ϑ(k) ≤ εk−p, then there exists a filtration π such that

‖Γπ
Σ‖∞ ≤


1 + ε (1 + ln(n− 1)) if p = 1,

1 + ε ζ(p) if p > 1,

where ζ(p) ,
∑∞

j=1 j
−p is the Riemann zeta function.

The proof is provided in Appendix B.6.

For p > 1, the Riemann function converges to a constant. For example, ζ(2) =

π2/6 ≈ 1.645. However, even p = 1 yields a sufficiently low growth rate. In Chapters 5

and 6, I prove generalization bounds of the form O (‖Γπ
Σ‖∞ /

√
mn), which still converges

if ‖Γπ
Σ‖∞ = O(lnn), albeit at a slower rate.
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Chapter 5: Generalization Bounds via Collective Stability

In many applications of structured prediction, each example has large internal structure,

so obtaining labeled examples can be expensive. It is therefore common to train a struc-

tured model on a few large examples—sometimes even just one example. Since previous

learning guarantees (e.g., Taskar et al., 2004; Bartlett et al., 2005; McAllester, 2007) are

vacuous for small training samples, the goal of this chapter is to show that one can indeed

obtain good generalization in this setting.

I first present a generalization bound based on the collective stability of the class

of predictors. This bound reviews (and corrects) my early work on this topic (London

et al., 2013a). I then apply the bound to a class of MRFs that use posterior decoding

with strongly convex variational inference. To my knowledge, the results reviewed in this

chapter were the first to show that one could potentially generalize from a single large

example, and the first to point out the importance of inference stability.

5.1 Covering Number

The generalization bound presented in the following section is stated in terms of the cov-

ering number of the hypothesis class. The covering number is an approximate bound on

the number of functions in the class. The uniform covering number effectively discretizes
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the space of hypotheses, allowing one to efficiently apply a union bound over all hypothe-

ses in the class. Low covering number equates with low complexity, which therefore leads

to better generalization.

Definition 11. Let S be a pseudometric space with pseudometric ρ : S ×S → R+. A set

C ⊆ S is an ε-cover of A ⊆ S under ρ if, for any a ∈ A, there exists a c ∈ C such that

ρ(a, c) ≤ ε.

Definition 12. Let F be a class of functions from X n to RN . For ϕ, ϕ′ ∈ F , let

ρ∞(ϕ, ϕ′) , sup
x∈Xn

1

N
‖ϕ(x)− ϕ′(x)‖1 .

The uniform covering number,N∞(ε,F , n), is the cardinality of the minimal class, F ′ ⊆

F , needed to ε-cover F under ρ∞.

This definition differs slightly from the canonical definition used in the literature.

Covering-based analyses typically use the empirical covering number, which requires a

symmetrization step to employ (Pollard, 1984). The above uniform covering number is

stronger; however, it does not require symmetrization. Modulo notation, this definition

can be viewed as a structured extension of the∞-norm covering number used by Bartlett

(1998).

5.2 Combining Collective Stability and Covering Number

In this section, I present a general risk bound for structured prediction, stated in terms

of the collective stability and covering number of the hypothesis class. This bound is
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an adaptation of my first published bounds (London et al., 2013a). It corrects a critical

mistake in the analysis by replacing Rademacher complexity with the covering number.

Since the applications of the original bounds used the covering number, the corrected

bound yields similar results.

For the following, I will assume an admissible decomposable loss function.

Definition 13. An decomposable is a loss function, L : H × Zn → R+, such that, for a

hypothesis, h : X n → Ŷn,

L(h,Z) =
1

n

n∑
i=1

c(Yi, hi(X)),

for some cost function, c : Y × Ŷ → R+.

An example of a decomposable loss function is given in Section 5.3. Note that the output

of the hypothesis is not assumed to be Yn; in the examples given, Ŷ is a continuous

relaxation of Y .

The stability of inference affects the stability of the loss; for a decomposable loss,

the cost function also affects the stability. In this work, certain cost functions are consid-

ered admissible.

Definition 14. A cost function, c, is (M,λ)-admissible if:

1. c is M -uniformly range-bounded;

2. for any y ∈ Y and ŷ, ŷ′ ∈ Ŷ , |c(y, ŷ)− c(y, ŷ′)| ≤ λ ‖ŷ − ŷ′‖1.

Lemma 2. If c is (M,λ)-admissible, andH has β-uniform collective stability, then c ◦H

has (M + λβ)-uniform collective stability.
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The proof is given in Appendix C.1.

Theorem 1. Fix m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1). Fix a distribution, D, on Zn,

and let Γπ denote the dependency matrix induced by D and π. Fix a hypothesis class,H,

with β-uniform collective stability, and a decomposable loss function, L, with a (M,λ)-

admissible cost function, c. Then, with probability at least 1 − δ over realizations of a

training set, Ẑ , (Z(l))ml=1, drawn according to Dm, every h ∈ H satisfies

L(h) ≤ L̂(h, Ẑ) + inf
ε

2 |Y|λ ε+ (M + λβ) ‖Γπ‖∞
√

ln (N∞(ε,H, n)/δ)

2mn
. (5.1)

Proof For the following, let F be a finite class of functions from Zn to Rn. For any

particular ϕ ∈ F , let

ϕ(Ẑ) ,
1

mn

m∑
l=1

n∑
i=1

ϕi(Z
(l)),

and

φ(ϕ, Ẑ) , E[ϕ(Ẑ)]− ϕ(Ẑ) = E

[
1

n

n∑
i=1

ϕi(Z)

]
− ϕ(Ẑ).

The last equality follows from linearity of expectation, and the fact that Z(1), . . . ,Z(m) are

identically distributed. Note that E[φ(ϕ, Ẑ)] = 0.

Now, suppose F has uniform collective stability β. Then, for any two realized

43



training sets, ẑ and ẑ′, that differ only in the lth example,

∣∣φ(ϕ, ẑ)− φ(ϕ, ẑ′)
∣∣ =

∣∣ϕ(ẑ)− ϕ(ẑ′)
∣∣

=

∣∣∣∣∣ 1

mn

n∑
i=1

ϕi(z
(l))− ϕi(z′(l))

∣∣∣∣∣
≤ 1

mn

∥∥ϕ(z(l))− ϕ(z′(l))
∥∥

1

≤ β

mn
DH(z(l), z′(l)).

Using the triangle inequality, it can then be shown that, for any ẑ and ẑ′, which may differ

at multiple examples,

∣∣φ(ϕ, ẑ)− φ(ϕ, ẑ′)
∣∣ ≤ β

mn
DH(ẑ, ẑ′).

Thus, every φ(ϕ, ·) : ϕ ∈ F is (β/(mn))-uniformly stable.

Since each example, Z(l), is independent and identically distributed, the dependency

matrix induced by Ẑ is block diagonal, with each block equal to Γπ; i.e.,



Γπ 0 · · · 0

0 Γπ · · · 0

...
... . . . ...

0 0 · · · Γπ


The infinity norm of this matrix is clearly the infinity norm of Γπ. We therefore apply the
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union bound and Corollary 1, with N , mn and β̄ , β/N , and have that

Pr

{
sup
ϕ∈F

φ(ϕ, Ẑ) ≥ τ

}
= Pr

{
∃ϕ ∈ F : φ(ϕ, Ẑ) ≥ τ

}
≤
∑
ϕ∈F

Pr
{
φ(ϕ, Ẑ) ≥ τ

}
≤ |F| exp

(
−2ε2

Nβ̄2 ‖Γπ‖2
∞

)

= |F| exp

(
−2mnε2

β2 ‖Γπ‖2
∞

)
.

Assigning δ probability to this event and solving for τ , we have that with probability at

least 1− δ,

sup
ϕ∈F

φ(ϕ,Z) ≤ β ‖Γπ‖∞
√

ln(|F| /δ)
2mn

. (5.2)

Now, suppose we had a finite hypothesis class,H′ ⊆ H, that ε-coveredH under ρ∞.

By the admissibility of c, we would have that, for any h ∈ H, there exists a corresponding

h′ ∈ H where

|L(h,Z)− L(h′,Z)| ≤ 1

n

n∑
i=1

|c(Yi, hi(X))− c(Yi, h′i(X))|

≤ λ

n
‖h(X)− h′(X)‖1

= |Y|λ 1

|Y|n ‖h(X)− h′(X)‖1

≤ |Y|λ ε.

(The prediction vectors, h(x) and h′(x), have length (|Y|n), so the term (|Y|n) in the
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denominator becomes the normalizing factor for the pseudometric, ρ∞.) This means that

∣∣L(h)− L(h′)
∣∣ ≤ E [|L(h,Z)− L(h′,Z)|] ≤ |Y|λ ε, (5.3)

and ∣∣∣L̂(h, Ẑ)− L̂(h′, Ẑ)
∣∣∣ ≤ 1

m

m∑
l=1

∣∣∣L(h,Z(l))− L(h′,Z(l))
∣∣∣ ≤ |Y|λ ε. (5.4)

Take H′ to be the minimal ε-cover of H, and let F , c ◦ H′. Every h′ ∈ H′ has a

corresponding ϕ ∈ F such that

ϕ(Ẑ) =
1

m

m∑
l=1

1

n

n∑
i=1

c(Y
(l)
i , h′i(X

(l))) =
1

m

m∑
l=1

L(h′,Z(l)) = L̂(h′, Ẑ),

and

φ(ϕ, Ẑ) , E[L̂(h′, Ẑ)]− L̂(h′, Ẑ) = L(h′)− L̂(h′, Ẑ).

Note that |F| = |H′| = N∞(ε,H, n). Further, since H has β-uniform collective stabil-

ity, so does H′; and by Lemma 2, F has (M + λβ)-uniform collective stability. Using

Equation 5.2, we therefore have that, with probability at least 1−δ, every h′ ∈ H′ satisfies

L(h′) ≤ L̂(h′, Ẑ) + sup
ϕ∈F

φ(ϕ, Ẑ)

≤ L̂(h′, Ẑ) + (M + λβ) ‖Γπ‖∞
√

ln(|F| /δ)
2mn

= L̂(h′, Ẑ) + (M + λβ) ‖Γπ‖∞
√

ln (N∞(ε,H, n)/δ)

2mn
.
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Combining this with Equations 5.3 and 5.4, with probability at least 1 − δ, every h ∈ H

(and corresponding h′ ∈ H′), satisfies

L(h) ≤ |Y|λ ε+ L(h′)

≤ |Y|λ ε+ L̂(h′, Ẑ) + (M + λβ) ‖Γπ‖∞
√

ln (N∞(ε,H, n)/δ)

2mn

≤ 2 |Y|λ ε+ L̂(h, Ẑ) + (M + λβ) ‖Γπ‖∞
√

ln (N∞(ε,H, n)/δ)

2mn
.

Taking the infimum over ε completes the proof.

Clearly, if ‖Γπ‖∞ = O(1), β = O(1), ε = O(1/
√
mn) and N∞(ε,H, n) is not too

big, then the empirical risk will uniformly converge to the true risk. The dependency ma-

trix is a function of the data distribution and cannot be controlled; however, the remaining

conditions depend on the loss function and hypothesis class. In the following section, I

will present an example of a loss function and hypothesis class for which these conditions

hold.

5.3 Application of Covering Number Bound

In this section, I will apply Theorem 1 to derive risk bounds for collective classification

by posterior decoding. Recall from Section 2.3.2 that posterior decoding selects the la-

bels with the highest marginal probability under the model distribution. I will examine

a specific class of templated MRFs that perform approximate marginal inference using a

free energy that strongly convex with respect to the 1-norm. I will show that the strong
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convexity of the inference objective enables two key results: (1) marginal inference in

this class of models has O(1)-uniform collective stability; (2) the covering number of the

class is exponential in the number of weights, which is small because of templating.

Recall that each label, y ∈ Y , is a basis vector, and the local marginals, µ ∈

[0, 1]|Y| : ‖µ‖1 = 1, obey the simplex constraint. Therefore, to select the marginal prob-

ability of any label, one can simply take the dot product, y · µ. When using posterior

decoding, a correct prediction requires that the correct label have the highest marginal

probability. (To avoid tie-breaking, assume this must be a strict inequality.) Thus, a

natural cost function is whether there is another label with equal or higher marginal prob-

ability:

c0(y, µ) , 1

{
〈y, µ〉 ≤ max

y′∈Y:y 6=y′
〈y′, µ〉

}
.

This is equivalent to the multiclass 0-1 cost for posterior decoding.

The problem with c0 is that it fails to satisfy the second admissibility requirement

for any finite λ. As such, to apply the risk bound, I will use a ramp cost:

cρ(y, µ) , rρ

(
〈y, µ〉 − max

y′∈Y:y 6=y′
〈y′, µ〉

)
,

where ρ ≥ 0 and

rρ(δ) ,



1 for δ ≤ 0,

1− δ/ρ for 0 < δ < ρ,

0 for δ ≥ ρ.

Note that cρ generalizes c0; the costs are equivalent when ρ = 0. Moreover, when ρ > 0,
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cρ dominates c0, and is admissible for a finite λ.

Lemma 3. The ramp cost cρ is (1, 1/ρ)-admissible.

The proof is deferred to Appendix C.2.

Let Lρ denote the decomposable loss function for cρ. Note that L0 is equivalent

to the Hamming loss (introduced in Section 6.5.1) for posterior decoding. To avoid con-

fusion with the structured ramp loss (introduced in Section 6.5.1.1), I will refer to Lρ as

the decomposable ramp loss. The following theorem upper-bounds the expected posterior

decoding Hamming loss, L0, by the empirical decomposable ramp loss, L̂ρ.

Example 1. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), ρ > 0 and δ ∈ (0, 1). Fix a graph,

G , (V , E), with maximum degree ∆G. Assume that supx∈X ‖x‖2 ≤ 1. Let HSC denote

the class of templated MRFs, with potentials defined in Section 2.3.4, that perform ap-

proximate marginal inference using a variational free energy whose conjugate function,

Φ̃∗, is κ-strongly convex w.r.t. the 1-norm. Let d , |w| denote the number of weights.

Then, with probability at least 1 − δ over realizations of Ẑ , (Z(l))ml=1, for all h ∈ HSC

with ‖w‖2 ≤ 1,

L0(h) ≤ L̂ρ(h, Ẑ) +
2

ρ
√
mn

+

(
1 +

√
2∆G + 4

ρ2κ

)
‖Γπ‖∞

√√√√d ln+
(

2d∆Gm
κ

)
+ ln e

δ

2mn
,

where ln+(α) , max{0, lnα}.

This example is limited to weights in the unit hypercube, but could be extended to

any bounded hypercube. Further, using a covering argument (similar to the ones used in

Chapter 6), the bound can be made to hold simultaneously for all bounded hypercubes.
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To prove Example 1, I will prove two technical lemmas. The first upper-bounds

the uniform collective stability of the class H1
SC , {h ∈ HSC : ‖w‖2 ≤ 1}; the second

upper-bounds the covering number of this class.

Lemma 4. Fix a graph,G , (V , E), with maximum degree ∆G, and assume that supx∈X ‖x‖2 ≤

1. Then the hypothesis classH1
SC has

(√
(2∆G + 4)/κ

)
-uniform collective stability.

Lemma 5. Fix a graph,G , (V , E), with maximum degree ∆G, and assume that supx∈X ‖x‖2 ≤

1. Let d , |w| denote the number of weights. Then, for any ε > 0,

N∞(ε,H1
SC, n) ≤

⌈(
2d∆G

κn |Y|2 ε2
)d⌉

.

Proofs are given in Appendices C.3 and C.4, respectively.

We can now prove Example 1.

Proof (Example 1) Since Lρ dominates L0 for all ρ > 0, it follows that Lρ dominates

L0. One can therefore apply Theorem 1 to Lρ, with (M,λ) = (1, 1/ρ) (via Lemma 3),

using Lemma 4 to upper-bound the uniform collective stability, and Lemma 5, with ε ,

(|Y|√mn)−1, for the covering number. We simplify the covering number using the fact

that

ln dαe ≤ ln(α + 1) ≤ ln+(α) + 1,

for any α ≥ 0.
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5.4 Discussion

In this chapter, I presented a generalization bound based on the uniform collective stability

and uniform covering number of the hypothesis class. The bound decreases as a function

of both the number of examples, m, and the size of each example, n. I applied the bound

to a class of templated MRFs that use strongly convex variational inference. The strong

convexity of the inference objective enables good collective stability and low covering

number. If the modulus of convexity does not decrease with n, and the data distribution

exhibits suitably weak dependence, then the learning rate is Õ(1/
√
mn), which is much

sharper than previous bounds.

The improved generalization rate critically relies on the dependency matrix, Γπ
Σ,

having low infinity norm. If this condition does not hold—for instance, suppose every

variable has some non-negligible dependence on every other variable, and ‖Γπ
Σ‖∞ =

O(n)—then the bounds are no more optimistic than previous results and may in fact be

slightly looser than some. However, if the dependence is sub-logarithmic, i.e., ‖Γπ
Σ‖∞ =

O(lnn), then the bounds are much more optimistic. In Section 4.3, I examined two set-

tings in which this assumption holds; these settings can be characterized by the following

conditions: strong local signal, bounded interactions (i.e., degree), and dependence that

decays with graph distance. Since the data distribution is determined by nature, it is not a

variable one can control. There may be situations in which the mixing coefficients can be

estimated from data, as done by McDonald et al. (2011) for β-mixing time series. I leave

this as a question for future research. Identifying weaker sufficient dependence conditions

is also of interest.
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Example 1 applies to posterior decoders whose variational free energy is strongly

convex with respect to the 1-norm. Unfortunately, this form of strong convexity is difficult

to satisfy with an Ω(1) modulus. It is easier to prove Ω(1)-strong convexity with respect

to the 2-norm. (For instance, the strong convexity guarantees for variational inference

discussed in Chapter 7 are all stated for the 2-norm.) Using the equivalence of norms

identity,

‖u‖1 ≤
√
|u| ‖u‖2 ,

one can relate 2-norm strong convexity to 1-norm strong convexity. If a function, ϕ :

Rn → R, is κ-strongly convex with respect to the 2-norm, then ϕ is (κ/n)-strongly

convex with respect to the 1-norm. However, for a conjugate function that is κ-strongly

convex with respect to the 2-norm, using this identity yields Ω(κ/ |G|)-strong convexity

with respect to the 1-norm; meaning, the modulus decreases with the size of the graph.

Substituting this modulus into Example 1 yields a bound that is Õ

(√
|G|
κmn

)
, which is at

least Õ
(√

1
κm

)
.

Then again, suppose the conjugate function were scaled by |G|. Then the free

energy would be (κ |G|)-strongly convex with respect to the 2-norm; hence, κ-strongly

convex with respect to the 1-norm, and Example 1 becomes Õ
(√

1
κmn

)
. Since the mini-

mizer of the free energy is invariant to scaling,

arg min
µ̃∈M̃

−w · f(x, µ̃) + |G| Φ̃∗(µ̃) = arg min
µ̃∈M̃

−w · f(x, µ̃)

|G| + Φ̃∗(µ̃).

Via Lemma 14 (in Appendix A), the features, f(x, µ̃), have norm at most |G|. Therefore,
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scaling up Φ̃∗ is equivalent to scaling down the features—which seems natural, given that

the graph could be arbitrarily large, so the unscaled features could have arbitrarily large

norm. Indeed, feature scaling is common practice in machine learning, and has been

shown to improve generalization for certain models (e.g., Herbrich and Graepel, 2001;

Juszczak et al., 2002; Graf et al., 2003). The above argument suggests that rescaling the

features can improve generalization for posterior decoding in MRFs.

How does this modification affect marginal inference? The conjugate function

(which is typically a negative entropy) acts as a regularizer, favoring pseudomarginals

that are more uniform. Thus, increasing the influence of this function in the free energy

minimization has a “flattening,” or “smoothing,” effect. The posterior decoding is not

affected by this flattening, but the decomposable ramp loss, Lρ, may be.
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Chapter 6: Generalization Bounds via Local Stability

The generalization bounds of the previous chapter rely on collective stability. This anal-

ysis can be limiting, since it only accommodates element-wise loss functions. To handle

more sophisticated loss functions (such as those discussed in Section 6.5) requires the

more general definitions of stability from Chapter 3. Another benefit of using these defi-

nitions is that they accommodate hypothesis classes that do not satisfy uniform stability,

but satisfy local stability.

In this chapter, I present generalization bounds based on local stability using the

PAC-Bayes framework. PAC-Bayes is an analytical framework in which prediction is

stochastic. Let P denote a predetermined prior distribution on H, and let Q denote a

posterior distribution, the parameters of which are typically learned from training data.

Given a realized input, x ∈ X n, one first draws a hypothesis, h ∈ H, according to Q,

then computes the prediction, h(x). Since prediction in the PAC-Bayes framework is

randomized, the loss quantities become expectations over draws of h, which I denote by

L̂(Q, Ẑ) , E
h∼Q

[
L̂(h, Ẑ)

]
and L(Q) , E

h∼Q

[
L(h)

]
,

respectively. A typical analysis involves upper-bounding the difference of these quantities

(with high probability), then “derandomizing” the bounds so that they hold for a learned,
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deterministic predictor.

PAC-Bayesian analysis is particularly well suited for the local stability condition

described in Definition 5. With prior knowledge of the hypothesis class (and data dis-

tribution), a posterior can be constructed so as to place low mass on predictors that do

not satisfy good stability. As shown in Section 6.5, this technique lets one relax certain

restrictions on the hypothesis class and data domain.

The remainder of this chapter is structured as follows. First, I provide a sketch of my

PAC-Bayesian approach, to introduce the key techniques used in the following proofs. I

then present two PAC-Bayesian theorems for structured prediction based on local stability.

The first theorem is stated for a given stability parameter, β. I then generalize this to

hold for all β simultaneously, meaning β can depend on the posterior. I also introduce a

novel technique to derandomize the bounds based on the stability of the loss function. To

demonstrate the application of the bounds, I give several examples, using max-margin and

soft-max training as motivation. Like the application presented in the previous chapter,

the new bounds also tighten as the effective size of the training set (number of examples

times size of each example) increases.

6.1 Analysis Sketch

The following is a high-level sketch of my PAC-Bayesian analysis, which I will specialize

to various settings in Sections 6.2 and 6.3. It will help to view the composition of the loss

function, L, and the hypothesis class, H, as a family of functions, L ◦ H = {L(h, ·) :

h ∈ H}. If Q is a distribution on H, it is also a distribution on L ◦ H. Each member of
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L ◦ H is a random function, determined by the draw of h ∼ Q. Further, when L(h, ·) is

composed with a training set Ẑ ∼ Dm in L̂(h, ·), the generalization error, L(h)− L̂(h, Ẑ),

becomes a centered random variable. Part of the analysis involves bounding the moment-

generating function of this random variable, and to do so requires the notions of stability

from Chapter 3. The stability of L(h, ·) is determined by h, so the “bad” members of

L ◦ H are in fact the “bad” hypotheses (for the given loss function).

Let Ẑ , (Z(l))ml=1 denote a training set of m structured examples, distributed ac-

cording to Dm. Fix some β ≥ 0 and a set of bad inputs BZ , with measure ν , D(BZ).

Implicitly, the pair (β,BZ) fixes a set of hypotheses BH ⊆ H for which L(h, ·) does not

satisfy Equation 3.1 with β′ , β/n and BZ . For the time being, BH is independent of

Q. Fix a prior P and posterior Q on H. (We will later consider all posteriors.) Define a

convenience function,

φ̃(h, Ẑ) ,


EZ∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) if h /∈ BH,

0 otherwise,

where B denotes the σ-algebra of Z /∈ BZ . First, for any uniformly bounded random

variable, with |X| ≤ b, and some event, E,

E [X] = E [X 1{E}] + E [X 1{¬E}] ≤ bPr{E}+ E [X 1{¬E}] .

This identity can be used to show that, if L ◦ H is α-uniformly range-bounded, and Q is
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(β/n,BZ , η)-locally stable, then

L(Q)− L̂(Q, Ẑ) ≤ αη + αν + E
h∼Q

[
φ̃(h, Ẑ)

]
.

To bound the Eh∼Q
[
φ̃(h, Ẑ)

]
, one can use Donsker and Varadhan’s (1975) change of

measure inequality.

Lemma 6. For any measurable function ϕ : Ω→ R, and any two distributions, P and Q,

on Ω,

E
ω∼P

[ϕ(ω)] ≤ DKL(P‖Q) + ln E
ω∼Q

[
eϕ(ω)

]
.

(McAllester (2003) provides a straightforward proof.) Using Lemma 6, for any free pa-

rameter u ≥ 0, we have that

E
h∼Q

[
φ̃(h, Ẑ)

]
≤ 1

u

(
DKL(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
.

Combining the above inequalities yields

L(Q)− L̂(Q, Ẑ) ≤ αη + αν +
1

u

(
DKL(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
.

The remainder of the analysis concerns how to bound Eh∼P
[
euφ̃(h,Ẑ)

]
and how to

optimize u. For the first task, one combines Markov’s inequality with the moment-

generating function bound from Chapter 4. Optimizing u takes some care, since the

bounds should hold simultaneously for all posteriors. To do so, I will adopt a discretiza-

tion technique (Seldin et al., 2012) that approximately optimizes the bound for all poste-
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riors. I use a similar technique to obtain bounds that hold for all β.

6.2 Fixed Stability Bounds

In the following theorem, I derive a new PAC-Bayes bound for posteriors with local sta-

bility, with β fixed. Fixing β means that the set of “bad” hypotheses is determined by the

characteristics of the hypothesis class independently of the posterior.

Theorem 2. Fix m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1), α ≥ 0 and β ≥ 0. Fix a

distribution, D, on Zn. Fix a set of bad inputs, BZ , with ν , D(BZ), and let B denote

the σ-algebra of Z /∈ BZ . Let Γπ
B denote the dependency matrix induced by D, π and

B. Fix a prior, P, on a hypothesis class, H. Fix a loss function, L, such that L ◦ H is

α-uniformly range-bounded. Then, with probability at least 1− δ−mν over realizations

of a training set, Ẑ , (Z(l))ml=1, drawn according to Dm, the following hold: 1) for all

l ∈ [m], Z(l) /∈ BZ; 2) for all η ∈ [0, 1] and posteriors Q with (β/n,BZ , η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + α(η + ν) + 2β
∥∥Γπ
B

∥∥
∞

√
DKL(Q‖P) + ln 2

δ

2mn
. (6.1)

To interpret the bound, suppose α = O(1), β = O(1), and that the data distribution

is weakly dependent, with ‖Γπ‖∞ = O(1). We would then have that the generalization

error decreases at a rate of O
(
η + ν + (mn)−1/2

)
. Since η is a function of the posterior,

we can reasonably assume that η = O
(
(mn)−1/2

)
. (Section 6.5 provides examples of

this.) However, while ν may be proportional to n, it is unreasonable to believe that ν will

decrease with m, since D is almost certainly agnostic to the number of training examples.
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Thus, Theorem 2 is interesting when either ν is negligible, or when m is a small constant.

It can be shown that any hypothesis class with collective stability, composed with

an element loss function and admissible cost function (see Section 5.2), satisfies the con-

ditions of the bound. Thus, Theorem 2 is strictly more general than my prior PAC-Bayes

bounds (London et al., 2014). Moreover, Theorem 2 easily applies to compositions with

uniform stability, since Q(BH) = 0 for all posteriors. This insight yields the following

corollary.

Corollary 2. Suppose L ◦ H is (β/n)-uniformly stable. Then, with probability at least

1− δ over realizations of Ẑ, for all Q,

L(Q) ≤ L̂(Q, Ẑ) + 2β ‖Γπ‖∞

√
DKL(Q‖P) + ln 2

δ

2mn
. (6.2)

As shown in Section 6.5.1.2, Corollary 2 is useful when the hypothesis class and instance

space are uniformly bounded. Even when this property does not hold, we obtain an iden-

tical bound for all posteriors with (β/n, ∅, 0)-local stability, meaning the support of the

posterior is (β/n)-uniformly stable. However, this condition is less useful, since it is as-

sumed that the posterior construction puts nonzero density on a learned hypothesis, which

may not satisfy uniform stability for a fixed β.

I now prove Theorem 2.
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Proof (Theorem 2) Begin by defining two convenience functions,

φ(h, Ẑ) , L(h)− L̂(h, Ẑ) (6.3)

and φ̃(h, Ẑ) ,


EZ∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) if h /∈ BH,

0 otherwise,

(6.4)

If L ◦ H is α-uniformly range-bounded (Definition 6), then, for any h ∈ H,

φ(h, Ẑ) =
1

m

m∑
l=1

L(h)− L(h,Z(l))

≤ 1

m

m∑
l=1

sup
z∈Zn

∣∣∣L(h, z)− L(h,Z(l))
∣∣∣

≤ 1

m

m∑
l=1

α = α. (6.5)

It follows that

φ(h, Ẑ) = E
Z∼D

[
L(h,Z)− L̂(h, Ẑ)

]
= E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z ∈ BZ}

]
≤ E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ α E

Z∼D
[1{Z ∈ BZ}]

≤ E
Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ αν

= Pr
Z∼D
{Z /∈ BZ}

(
E

Z∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ)

)
+ αν

≤ E
Z∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) + αν. (6.6)
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Moreover, for any posterior Q with (β/n,BZ , η)-local stability,

L(Q)− L̂(Q, Ẑ) = E
h∼Q

[
φ(h, Ẑ)

]
= E

h∼Q

[
φ(h, Ẑ)1{h ∈ BH}

]
+ E

h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ α E

h∼Q
[1{h ∈ BH}] + E

h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ αη + E

h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ αη + αν + E

h∼Q

[
φ̃(h, Ẑ)

]
. (6.7)

Then, for any u ∈ R, using Lemma 6, we have that

L(Q)− L̂(Q, Ẑ) ≤ αη + αν +
1

u
E
h∼Q

[
u φ̃(h, Ẑ)

]
≤ αη + αν +

1

u

(
DKL(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
. (6.8)

Since u cannot depend on (η,Q), we define it in terms of fixed quantities. For

j = 0, 1, 2, . . ., let δj , δ2−(j+1), let

uj , 2j

√√√√ 8mn ln 2
δ

β2
∥∥Γπ
B

∥∥2

∞

, (6.9)

and define an event,

Ej , 1

{
E
h∼P

[
euj φ̃(h,Ẑ)

]
≥ 1

δj
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)}
. (6.10)

Note that uj and Ej are independent of (η,Q), since β (hence, BH) is fixed. Let E ,
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⋃∞
j=0Ej denote the event that any Ej occurs. Also, define an event

B ,
m⋃
l=1

1
{

Z(l) ∈ BZ
}
, (6.11)

which indicates that at least one of the training examples is “bad.” Using the law of total

probability and the union bound, we then have that

Pr
Ẑ∼Dm

{B ∪ E} = Pr
Ẑ∼Dm

{B}+ Pr
Ẑ∼Dm

{E ∩ ¬B}

≤ Pr
Ẑ∼Dm

{B}+ Pr
Ẑ∼Dm

{E | ¬B}

≤
m∑
l=1

Pr
Z(l)∼D

{Z(l) ∈ BZ}+
∞∑
j=0

Pr
Ẑ∼Dm

{Ej | ¬B}

≤ mν +
∞∑
j=0

Pr
Ẑ∼Dm

{Ej | ¬B}. (6.12)

The last inequality follows from the definition of ν. Then, using Markov’s inequality, and

rearranging the expectations, we have that

Pr
Ẑ∼Dm

{Ej | ¬B} ≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

E
Ẑ∼Dm

[
euj φ̃(h,Ẑ) | ¬B

]
. (6.13)

Let

ϕ(h,Z) ,


1
m

(
EZ′∼D

[
L(h,Z′) | B

]
− L(h,Z)

)
if h /∈ BH,

0 otherwise,

(6.14)

and note that φ̃(h, Ẑ) =
∑m

l=1 ϕ(h,Z(l)). Then, since Z(1), . . . ,Z(m) are independent and
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identically distributed, one can write the inner expectation over Ẑ as

E
Ẑ∼Dm

[
euj φ̃(h,Ẑ) | ¬B

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | ¬B

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) |Z(l) /∈ BZ

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]
. (6.15)

By construction, ϕ(h, ·) outputs zero whenever h ∈ BH. In these cases, ϕ(h, ·) trivially

satisfies uniform stability, which implies local stability. Further, if Q is (β/n,BZ , η)-

locally stable, then every L(h, ·) : h /∈ BH is (β/n,BZ)-locally stable, and it is easily

verified that ϕ(h, ·) : h /∈ BH is (β/(mn),BZ)-locally stable. Thus, ϕ(h, ·) : h ∈ H is

(β/(mn),BZ)-locally stable. Since EZ∼D[ϕ(h,Z) | B] = 0, we therefore apply Proposi-

tion 1 and have, for all h ∈ H,

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]
≤ exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8m2n

)
. (6.16)

Combining Equations 6.13, 6.15 and 6.16, we have that

Pr
Ẑ∼Dm

{Ej | ¬B} ≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

[
m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]]

≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

[
m∏
l=1

exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8m2n

)]

= δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
= δj. (6.17)

Then, combining Equations 6.12 and 6.17, and using the geometric series identity, we
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have that

Pr
Ẑ∼Dm

{B ∪ E} ≤ mν +
∞∑
j=0

δj = mν + δ

∞∑
j=0

2−(j+1) = mν + δ.

Thus, with probability at least 1 − δ −mν over realizations of Ẑ, every l ∈ [m] satisfies

Z(l) /∈ BZ , and every uj satisfies

E
h∼P

[
euj φ̃(h,Ẑ)

]
≤ 1

δj
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
. (6.18)

I now show how to select j for any particular posterior Q. Let

j? ,

⌊
1

2 ln 2
ln

(
DKL(Q‖P)

ln(2/δ)
+ 1

)⌋
, (6.19)

and note that j? ≥ 0. For all v ∈ R, we have that v − 1 ≤ bvc ≤ v, and 2ln v = vln 2. We

can apply these identities to Equation 6.19 to show that

1

2

√
DKL(Q‖P)

ln(2/δ)
+ 1 ≤ 2j

? ≤
√
DKL(Q‖P)

ln(2/δ)
+ 1,

implying

√√√√2mn
(
DKL(Q‖P) + ln 2

δ

)
β2
∥∥Γπ
B

∥∥2

∞

≤ uj? ≤

√√√√8mn
(
DKL(Q‖P) + ln 2

δ

)
β2
∥∥Γπ
B

∥∥2

∞

. (6.20)
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Further, by definition of δj? ,

DKL(Q‖P) + ln
1

δj?
= DKL(Q‖P) + ln

2

δ
+ j? ln 2

≤ DKL(Q‖P) + ln
2

δ
+

ln 2

2 ln 2
ln

(
DKL(Q‖P)

ln(2/δ)
+ 1

)
= DKL(Q‖P) + ln

2

δ
+

1

2
ln

(
DKL(Q‖P) + ln

2

δ

)
− 1

2
ln ln

2

δ

≤ DKL(Q‖P) + ln
2

δ
+

1

2

(
DKL(Q‖P) + ln

2

δ

)
, (6.21)

for all δ ∈ (0, 1). It can be shown that this is approximately optimal, in that the bound is

at most twice what it would be for a fixed posterior.

Putting it all together, we now have that, with probability at least 1 − δ −mν, the

approximately optimal (uj? , δj?) for any posterior Q satisfies

L(Q)− L̂(Q, Ẑ) ≤ α(η + ν) +
1

uj?

(
DKL(Q‖P) + ln E

h∼P

[
euj? φ̃(h,Ẑ)

])
≤ α(η + ν) +

1

uj?

(
DKL(Q‖P) + ln

1

δj?
+
u2
j?β

2
∥∥Γπ
B

∥∥2

∞
8mn

)

≤ α(η + ν) +
3
(
DKL(Q‖P) + ln 2

δ

)
2uj?

+
uj?β

2
∥∥Γπ
B

∥∥2

∞
8mn

≤ α(η + ν) + 2β
∥∥Γπ
B

∥∥
∞

√
DKL(Q‖P) + ln 2

δ

2mn
.

The first inequality substitutes uj? into Equation 6.8; the second uses Equation 6.18; the

third is from Equation 6.21; and the last uses the lower and upper bounds from Equa-

tion 6.20.
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6.3 Posterior-Dependent Stability

In Theorem 2, I required β to be fixed a priori, meaning the user must pre-specify a de-

sired stability. In this section, I prove bounds that hold for all β ≥ 1 simultaneously,

meaning the value of β can depend on the learned posterior. (The requirement of nonneg-

ativity is not restrictive, since stability with β ≤ 1 implies stability with β = 1.)

Theorem 3. Fix m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and α ≥ 0. Fix a distribution, D,

on Zn. Fix a set of bad inputs, BZ , with ν , D(BZ), and let B denote the σ-algebra of

Z /∈ BZ . Let Γπ
B denote the dependency matrix induced by D, π and B. Fix a prior, P,

on a hypothesis class, H. Fix a loss function, L, such that L ◦ H is α-uniformly range-

bounded. Then, with probability at least 1 − δ −mν over realizations of Ẑ , (Z(l))ml=1,

drawn according to Dm, the following hold: 1) for all l ∈ [m], Z(l) /∈ BZ; 2) for all

β ≥ 1, η ∈ [0, 1] and posteriors Q with (β/n,BZ , η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + α(η + ν) + 4β
∥∥Γπ
B

∥∥
∞

√
DKL(Q‖P) + ln 4

δ
+ ln β

2mn
. (6.22)

The proof is similar to that of Theorem 2, so I defer it to Appendix D.1.

Theorem 3 immediately yields the following corollary by taking BZ , ∅.

Corollary 3. With probability at least 1−δ over realizations of Ẑ, for all β ≥ 1, η ∈ [0, 1]

and Q with (β/n, ∅, η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + αη + 4β ‖Γπ‖∞

√
DKL(Q‖P) + ln 4

δ
+ ln β

2mn
. (6.23)
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In Section 6.5, I apply this corollary to unbounded hypothesis classes, with bounded

instance spaces. Corollary 3 trivially implies a bound for posteriors with (β/n, ∅, 0)-local

stability, such as those with bounded support on an unbounded hypothesis class, where β

may depend on a learned model.

6.4 Derandomizing the Loss using Stability

PAC-Bayes bounds are stated in terms of a randomized predictor. Yet, in practice, one

is usually interested in the loss of a learned, deterministic predictor. Given a properly

constructed posterior distribution, it is possible to convert a PAC-Bayes bound to a gen-

eralization bound for the learned hypothesis. There are various ways to go about this for

unstructured hypotheses; however, many of these methods fail for structured predictors,

since the output is not simply a scalar, but a high-dimensional vector. In this section, I

present a generic technique for derandomizing PAC-Bayes bounds for structured predic-

tion based on the idea of stability. An attractive feature of this technique is that it obviates

margin-based arguments, which often require a free-parameter for the margin.

I first define a specialized notion of local stability that measures the difference in

loss induced by perturbing a given hypothesis. For the following, I view the posterior Q

as a function that, given a hypothesis h ∈ H, returns a distribution Qh onH.

Definition 15. Fix a hypothesis class,H, a set of inputs, BZ ⊆ Zn, a loss function, L, and

a posterior, Q. The pair (L,Q) has (λ,BZ , η)-local stability if, for any h ∈ H and z /∈ BZ ,
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there exists a set BH(h, z) ⊆ H such that Qh(BH(h, z)) ≤ η and, for all h′ /∈ BH(h, z),

|L(h, z)− L(h′, z)| ≤ λ. (6.24)

This form of stability is a slightly weaker condition than the previous definitions,

in that each input, (h, z), has its own “bad” set, BH(h, z). This distinction means that

“badness” is relative, whereas, in Definitions 4 and 5, it is absolute.

Proposition 4. Fix a hypothesis class, H, a set of inputs, BZ ⊆ Zn, with ν , D(BZ),

and a loss function, L, such that, for any z ∈ Zn, L(·, z) is α-uniformly range-bounded.

Let Q denote a posterior function on H. If (L,Q) has (λ,BZ , η)-local stability, then, for

all h ∈ H, ∣∣L(h)− L(Qh)
∣∣ ≤ α(η + ν) + λ, (6.25)

and, for all ẑ , (z(l))ml=1 such that, ∀l ∈ [m], z(l) /∈ BZ ,

∣∣∣L̂(h, ẑ)− L̂(Qh, ẑ)
∣∣∣ ≤ αη + λ. (6.26)

Proof Define a convenience function

ϕ(h, h′, z) , |L(h, z)− L(h′, z)| .
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For any z /∈ BZ , using the range-boundedness and stability assumptions, we have that

E
h′∼Qh

[ϕ(h, h′, z)]

= E
h′∼Qh

[ϕ(h, h′, z)1{h′ ∈ BH(h, z)}] + E
h′∼Qh

[ϕ(h, h′, z)1{h′ /∈ BH(h, z)}]

≤ αη + λ.

Therefore, if, ∀l ∈ [m], z(l) /∈ BZ , by linearity of expectation and the triangle inequality,

∣∣∣L̂(h, ẑ)− L̂(Qh, ẑ)
∣∣∣ =

∣∣∣∣∣ 1

m

m∑
l=1

E
h′∼Qh

[
L
(
h, z(l)

)
− L

(
h′, z(l)

)]∣∣∣∣∣
≤ 1

m

m∑
l=1

E
h′∼Qh

[
ϕ
(
h, h′, z(l)

)]
≤ αη + λ.

thus proving Equation 6.26. Furthermore,

∣∣L(h)− L(Qh)
∣∣ =

∣∣∣∣ EZ∼D
E

h′∼Qh
[L(h,Z)− L(h′,Z)]

∣∣∣∣
≤ E

Z∼D
E

h′∼Qh
[ϕ(h, h′,Z)]

= E
Z∼D

E
h′∼Qh

[ϕ(h, h′,Z)1{Z ∈ BZ}] + E
Z∼D

E
h′∼Qh

[ϕ(h, h′,Z)1{Z /∈ BZ}]

≤ αν + αη + λ,

which proves Equation 6.25.

Proposition 4 can easily be combined with the PAC-Bayes bounds from the previ-

69



ous sections to obtain derandomized generalization bounds. I analyze some examples in

Section 6.5.

6.4.1 Normed Vector Spaces

When the hypothesis class is a normed vector space (as is the case in all of the examples

in Section 6.5), Definition 15 can be decomposed into properties of the loss function and

posterior separately.

Definition 16. Fix a hypothesis class,H, equipped with a norm, ‖ · ‖. Fix a set of inputs,

BZ ⊆ Zn. A loss function, L, has (λ,BZ)-local hypothesis stability if, for all h, h′ ∈ H

and z /∈ BZ ,

|L(h, z)− L(h′, z)| ≤ λ ‖h− h′‖ .

Definition 17. Fix a hypothesis class,H, equipped with a norm, ‖ · ‖. A posterior, Q, has

(β, η)-local hypothesis stability if, for any h ∈ H, there exists a set BH(h) ⊆ H such that

Qh(BH(h)) ≤ η and, for all h′ /∈ BH(h), ‖h− h′‖ ≤ β.

When both of these properties hold, we have the following.

Proposition 5. Fix a hypothesis class,H, equipped with a norm, ‖ · ‖. Fix a set of inputs,

BZ ⊆ Zn. If a loss function, L, has (λ,BZ)-local hypothesis stability, and a posterior, Q,

has (β, η)-local hypothesis stability, then (L,Q) has (λβ,BZ , η)-local stability.

The proof is provided in Appendix D.2.
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6.5 Example Applications

In this section, I apply the PAC-Bayes bounds to two popular training regimes, max-

margin and soft-max learning, under various assumptions about the instance space and

hypothesis class. This illustrates how various modeling decisions affect the generalization

error. The results in this section are stated in terms of a deterministic predictor. I use the

PAC-Bayes framework as an analytic tool only. However, the derandomized bounds can

be adapted for a randomized predictor, and can in fact be made considerably tighter.

6.5.1 Max-Margin Learning

For classification tasks, the goal is to output the labeling that is closest to the true labeling,

by some measure of closeness. This is usually measured by the Hamming loss,

LH(h,x,y) ,
1

n
DH (y, h(x)) .

The Hamming loss can be considered the structured equivalent of the 0-1 loss. Unfortu-

nately, the Hamming loss is not convex, making it difficult to minimize directly. Thus,

many learning algorithms minimize a convex upper bound.

One such method is max-margin learning. Max-margin learning aims to find the

“simplest” model that scores the correct outputs higher than all incorrect outputs by a

specified margin. Though typically formulated as a quadratic program, the learning ob-

jective can also be stated as minimizing a hinge loss, with model regularization.

Structured predictors learned with a max-margin objective are alternatively referred
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to as max-margin Markov networks (Taskar et al., 2004) or StructSVM (Tsochantaridis

et al., 2005), depending on the form of the hinge loss. In this section, I consider the

former formulation, defining the structured hinge loss as

Lh(h,x,y) ,
1

n

(
max
y′∈Yn

DH(y,y′) + h(x,y′)− h(x,y)

)
, (6.27)

where

h(x,y) , θ(x; w) · ŷ (6.28)

is the unnormalized log-likelihood. The Hamming distance, DH(y,y′), implies that the

margin, h(x,y)− h(x,y′), should scale linearly with the distance between y and y′.

In theory, the structured hinge loss can be defined with any distance function;

though, in practice, the Hamming distance is commonly used. One attractive property

of the Hamming distance is that, when

h(x) , arg max
y∈Yn

h(x,y) = arg max
y∈Yn

p (Y = y |X = x; w) (6.29)

(i.e., MAP inference), the hinge loss upper-bounds the Hamming loss. Another benefit is

that it decomposes along the unary cliques. Indeed, with δ(y) ,
[

1−y
0

]
(i.e., one minus

the unary clique assignments, then zero-padded to be the same length as ŷ), observe that

DH(y,y′) = δ(y) · ŷ′. This identity yields a convenient equivalence:

Lh(h,x,y) =
1

n

(
max
y′∈Yn

(θ(x; w) + δ(y)) · ŷ′ − θ(x; w) · ŷ
)
.
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The term θ(x; w) · ŷ is constant with respect to y′, and is thus irrelevant to the maximiza-

tion. Therefore, letting

θ̃(x,y; w) , θ(x; w) + δ(y), (6.30)

computing the hinge loss is equivalent to performing loss-augmented MAP inference

with θ̃(x,y; w). Provided inference can be computed efficiently with the given class

of models, so too can the hinge loss.1

6.5.1.1 Structured Ramp Loss

Applying the generalization bounds requires a uniformly range-bounded loss function.

Since the hinge loss is not uniformly range-bounded for certain hypothesis classes, I

therefore introduce the structured ramp loss:

Lr(h,x,y) ,
1

n

(
max
y′∈Yn

DH(y,y′) + h(x,y′)− max
y′′∈Yn

h(x,y′′)

)
,

where h(x,y) is defined in Equation 6.28. The ramp loss is 1-uniformly range-bounded.

Further, when h(x) performs MAP inference (Equation 6.29),

LH(h,x,y) ≤ Lr(h,x,y) ≤ Lh(h,x,y). (6.31)

Thus, one can analyze the generalization properties of the ramp loss to obtain bounds

for the difference of the expected Hamming loss and empirical hinge loss. To distin-

1The results in this section are easily extended to approximate MAP inference algorithms, such as linear
programming relaxations. The bounds are the same, but the semantics of the loss functions change, since
approximate MAP solutions might be fractional.
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guish quantities of different loss functions, I will use a subscript notation; e.g., LH is the

expected Hamming loss, and L̂h is the empirical hinge loss.

Using the templated, linear potentials defined in Section 2.3.4, one obtains two

technical lemmas for the structured ramp loss. Proofs are provided in Appendices D.3

and D.4.

Lemma 7. Fix any p, q ≥ 1 such that 1/p + 1/q = 1. Fix a graph, G , (V , E), with

maximum degree ∆G. Assume that supx∈X ‖x‖p ≤ R. Then, for any MRF h with weights

w, and any z, z ∈ Zn, where z = (x,y) and z′ = (x′,y′),

|Lr(h, z)− Lr(h, z
′)| ≤ 1

n

(
(2∆G + 4)R ‖w‖q + 1

)
DH(z, z′). (6.32)

Further, if the model does not use edge observations (i.e., fij(x,y) , yi ⊗ yj), then

|Lr(h, z)− Lr(h, z
′)| ≤ 1

n

(
4R ‖w‖q + 1

)
DH(z, z′). (6.33)

Lemma 8. Fix any p, q ≥ 1 such that 1/p + 1/q = 1. Fix a graph, G , (V , E). Assume

that supx∈X ‖x‖p ≤ R. Then, for any example z ∈ Zn, and any two MRFs, h, h′ with

weights w,w′,

|Lr(h, z)− Lr(h
′, z)| ≤ 2 |G|R

n
‖w −w′‖q .

Lemma 8 implies that Lr has (2 |G|R/n, ∅)-local hypothesis stability.
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6.5.1.2 Generalization Bounds for Max-Margin Learning

I now apply the PAC-Bayes bounds to the class of max-margin Markov networks that

perform MAP inference, with the templated, linear potentials defined in Section 2.3.4. I

denote this class by HM3N. As a warm-up, I first assume that both the observations and

weights are uniformly bounded by the 2-norm unit ball. By Lemma 7, this means that the

ramp loss satisfies uniform stability, meaning one can apply Corollary 2.

Example 2. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and δ ∈ (0, 1). Fix a graph, G , (V , E),

with maximum degree ∆G. Assume that supx∈X ‖x‖2 ≤ 1. Then, with probability at

least 1− δ over realizations of Ẑ , (Z(l))ml=1, for all h ∈ HM3N with ‖w‖2 ≤ 1,

LH(h) ≤ L̂h(h, Ẑ) +
4

mn
+ (4∆G + 10) ‖Γπ‖∞

√
d ln(2m |G|) + ln 2

δ

2mn
.

The proof is given in Appendix D.5. Note that, with the bounded degree assumption,

|G| ≤ n∆G = O(n).

I now relax the assumption that the hypothesis class is bounded. One approach is

to apply a covering argument directly to Example 2. However, it is interesting to see

how other prior/posterior constructions behave. Of particular interest are Gaussian con-

structions, which correspond to 2-norm regularization. Since the support of a Gaussian

is unbounded, this construction requires a non-uniform notion of stability. The following

example illustrates how to use posterior-dependent, local stability.

Example 3. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and δ ∈ (0, 1). Fix a graph, G , (V , E),

with maximum degree ∆G. Assume that supx∈X ‖x‖2 ≤ 1. Then, with probability at
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least 1− δ over realizations of Ẑ , (Z(l))ml=1, for all h ∈ HM3N,

LH(h) ≤ L̂h(h, Ẑ)+
7

mn
+4βh ‖Γπ‖∞

√
1
2
‖w‖2

2 + d
2

ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

where

βh , (2∆G + 4)

(
‖w‖2 +

1

m |G|

)
+ 1.

Example 3 is only slightly worse than Example 2, incurring a O (ln ln(mn)) term for the

Gaussian construction. Both bounds guarantee generalization when eitherm or n is large.

The proof of Example 3 uses a concentration inequality for vectors of Gaussian

random variables, the proof of which is given Appendix D.6.

Lemma 9. Let X , (Xi)
d
i=1 be independent Gaussian random variables, with mean

vector µ , (µ1, . . . , µd) and variance σ2. Then, for any p ≥ 1 and ε > 0,

Pr
{
‖X− µ‖p ≥ ε

}
≤ 2d exp

(
− ε2

2σ2d2/p

)
.

For p = 2 and small σ2, this bound can be significantly sharper than Chebyshev’s inequal-

ity.

Proof (Example 3) Define the prior, P, as an isotropic, standard normal distribution; that

is, zero-mean, with unit variance in all directions. More precisely, let

p(h) , (2π)−d/2e−
1
2
‖w‖22

denote the density of P. Given a (learned) hypothesis, h, we construct the posterior, Qh,
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as another isotropic Gaussian, centered at w, with variance

σ2 ,
(
2d(m |G|)2 ln(2dmn)

)−1
.

Its density is

qh(h
′) , (2πσ2)−d/2e−

1
2σ2 ‖w′−w‖22 .

Note that the support of both distributions is Rd, which is unbounded.

The proof technique involves four steps. First, we upper-bound the KL divergence

between Qh and P. Then, we identify a βh and η such that Qh is (βh/n, ∅, η)-locally

stable. Combining the first two steps with Corollary 3 yields a PAC-Bayes bound for the

randomized predictor. The final step is to derandomize this bound using Proposition 4.

The KL divergence between normal distributions is well known. Thus, it is easily

verified that

DKL(Qh‖P) =
1

2

[
d
(
σ2 − 1

)
+ ‖w‖2

2 − d lnσ2
]

=
1

2

[
d

(
1

2d(m |G|)2 ln(2dmn)
− 1

)
+ ‖w‖2

2 + d ln
(
2d(m |G|)2 ln(2dmn)

)]
≤ 1

2

[
‖w‖2

2 + d ln
(
2d(m |G|)2 ln(2dmn)

)]
.

The inequality follows from the fact that σ2 ≤ 1 for all d ≥ 1,m ≥ 1 and n ≥ 1 (implying

|G| ≥ 1).
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Fix any h ∈ HM3N, and define a “bad” set of hypotheses,

BHM3N
(h) ,

{
h′ ∈ HM3N : ‖w′ −w‖2 ≥

1

m |G|

}
.

Using Lemma 9,

Qh (BHM3N
(h)) = Pr

h′∼Qh

{
‖w′ −w‖2 ≥

1

m |G|

}
≤ 2d exp

(
−2d(m |G|)2 ln(2dmn)

2d(m |G|)2

)
=

1

mn
. (6.34)

Further, for every h′ /∈ BHM3N
(h),

‖w′‖2 − ‖w‖2 ≤ ‖w′ −w‖2 ≤
1

m |G| .

When combined with Lemma 7, with R = 1, we have that

|Lr(h, z)− Lr(h, z
′)| ≤ 1

n
((2∆G + 4) ‖w′‖2 + 1)DH(z, z′)

≤ 1

n

(
(2∆G + 4)

(
‖w‖2 +

1

m |G|

)
+ 1

)
DH(z, z′)

=
βh
n
DH(z, z′).

Thus, every Qh is (βh/n, ∅, 1/(mn))-locally stable.

The definition of βh depends on the posterior via w. Therefore, we must use a

PAC-Bayes bound from Section 6.3. In this case, there are no “bad” inputs, since the
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observations are bounded in the unit ball, so we can invoke Corollary 3. Recalling that

the ramp loss is 1-uniformly difference bounded, we then have that, with probability at

least 1− δ, every Qh : h ∈ HM3N satisfies

Lr(Qh) ≤ L̂r(Qh, Ẑ) +
1

mn

+ 4βh ‖Γπ‖∞

√
1
2
‖w‖2

2 + d
2

ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
. (6.35)

Observe that HM3N is a normed vector space, since it consists of weight vectors

in Rd. In this case, we will use the 2-norm. By Equation 6.34, it is clear that Q has

(1/(m |G|), 1/(mn))-local hypothesis stability (Definition 17), since every h ∈ HM3N

results in the same probability bound. Further, by Lemma 8, with R = 1,

|Lr(h, z)− Lr(h
′, z)| ≤ 2 |G|

n
‖w −w′‖2 , (6.36)

meaning Lr has (2 |G| /n, ∅)-local hypothesis stability (Definition 16). Therefore, by

Proposition 5, (Lr,Q) has (2/(mn), ∅, 1/(mn))-local stability. It then follows, via Propo-

sition 4 and Equation 6.31, that

LH(h) ≤ Lr(h) ≤ Lr(Qh) +
3

mn
, (6.37)

and

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
3

mn
≤ L̂h(h, Ẑ) +

3

mn
. (6.38)

Combining Equations 6.35, 6.37 and 6.38 completes the proof.
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6.5.2 Soft-Max Learning

A drawback of max-margin learning is that the learning objective is not differentiable

everywhere, due to the hinge loss. Thus, researchers (Gimpel and Smith, 2010; Hazan

and Urtasun, 2010) have proposed a smooth alternative, based on the soft-max function.

This form of learning has been popularized for learning conditional random fields (CRFs).

The soft-max loss, for a given temperature parameter, ε ∈ [0, 1], is defined as

Lsm(h,x,y) ,
1

n
(Φε(x,y; w)− h(x,y)) , (6.39)

where h(x,y) is the unnormalized log-likelihood (Equation 6.28) and

Φε(x,y; w) , ε ln
∑

y′∈Yn
exp

(
1

ε
(DH(y,y′) + h(x,y′))

)

= ε ln
∑

y′∈Yn
exp

(
1

ε
θ̃(x,y; w) · ŷ′

)
. (6.40)

is the soft-max function. I purposefully overload the notation of the log-partition function

due to its relationship to the soft-max. Observe that, for ε = 1, the soft-max becomes

the log-partition of the distribution induced by the loss-augmented potentials, and Equa-

tion 6.39 is the corresponding negative log-likelihood, scaled by 1/n. Further, as ε → 0,

the soft-max approaches the max operator and Equation 6.39 becomes the hinge loss

(Equation 6.27).

The latter equivalence can be illustrated using the variational form of the log-
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partition function (Equation 2.1). The soft-max, like the log-partition, has the following

variational form:

Φε(x,y; w) = max
µ∈M

θ̃(x,y; w) · µ− εΦ∗(µ)

= max
µ∈M

(θ(x,y; w) + δ(y)) · µ− εΦ∗(µ), (6.41)

where Φ∗ is the convex conjugate of the loss-augmented log-partition. This maximization

is equivalent to marginal inference with loss-augmented potentials. Thus, the soft-max is

generally intractable to compute. In practice, one could substitute a variational technique,

such as the ones discussed in Chapter 7.

Let µu denote the marginals of the unary cliques, and observe that

δ(y) · µ =
1

2
‖y − µu‖1 , D1(y,µ). (6.42)

With a slight abuse of notation, define an alternate scoring function for marginals:

hε(x,µ) , θ(x; w) · µ− εΦ∗(µ). (6.43)

Recall that each full labeling, ŷ, corresponds to a vertex of the marginal polytope, so

ŷ ∈ M. Further, hε(x, ŷ) = h(x,y), since Φ∗(ŷ) = 0. Thus, combining Equations 6.41

to 6.43, we have that the soft-max loss (Equation 6.39) is equivalent to

Lsm(h,x,y) =
1

n

(
max
µ∈M

D1(y,µ) + hε(x,µ)− hε(x, ŷ)

)
,
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which resembles a smoothed hinge loss for ε ∈ (0, 1).

Like the regular hinge loss, Lsm(h,x,y) is not uniformly range-bounded for certain

hypothesis classes, so it cannot be used with our PAC-Bayes bounds. However, one can

use the ramp loss, with a slight modification:

Lsr(h,x,y) ,
1

n

(
max
µ∈M

D1(y,µ) + hε(x,µ)− max
µ′∈M

hε(x,µ
′)

)
.

Essentially, this just replaces the maxes over Zn with maxes over M and uses Equa-

tion 6.43 instead of Equation 6.28. I refer to this loss as the soft ramp loss. Many proper-

ties of the regular ramp loss also apply to the soft ramp loss. Since each clique’s marginals

sum to one, it is straightforward to show that Lemmas 13 and 14 still hold. Further, the

additional Φ∗ term cancels out in Equations D.5, D.6, D.8 and D.9, so Lemmas 7 and 8

also hold.

The distance function, D1(y,µ), has a probabilistic interpretation:

D1(y,µ) =
n∑
i=1

1− pµ (Yi = yi |X = x) .

This identity motivates another loss function; with

µε(x; w) , arg max
µ∈M

hε(x,µ),

let

L1(h,x,y) ,
1

n
D1 (y,µε(x; w)) =

1

n

n∑
i=1

1− p (Yi = yi |X = x; w) .
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Note that

L1(h,x,y) ≤ Lsr(h,x,y) ≤ Lsm(h,x,y).

Conveniently, because the (pseudo)marginals sum to one, it can also be shown that the

Hamming loss of the posterior decoding of µε(x; w) is at most twice L1.

In the following example, I consider the class of soft-max CRFs, HCRF. For his-

torical reasons, these models typically do not use edge observations, which is a common

modeling decision in, e.g., sequence models. I therefore assume that the edge features are

simply fij(x,y) , yi ⊗ yj .

Example 4. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and G , (V , E). Assume that

supx∈X ‖x‖2 ≤ 1. Then, with probability at least 1− δ over realizations of Ẑ , (Z(l))ml=1,

for all h ∈ HCRF,

L1(h) ≤ L̂sm(h, Ẑ)+
7

mn
+4βh ‖Γπ‖∞

√
1
2
‖w‖2

2 + d
2

ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

(6.44)

where

βh , 4

(
‖w‖2 +

1

m |G|

)
+ 1.

I omit the proof, since it is almost identical to Example 3. The key difference worth noting

is that, since the model does not use edge observations, the graph’s maximum degree does

not appear in βh.

It is interesting to compare Example 4 to the posterior decoding risk bound in Ex-

ample 1. We could do so by simply multiplying the righthand side of Equation 6.44 by

2, since the expected posterior decoding Hamming loss, L0(h), is at most twice L1(h).
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However, since the weights are uniformly bounded in Example 1, it would be an un-

fair comparison. To make a fair comparison, we can adapt Example 4 for the class

{h ∈ HM3N : ‖w‖2 ≤ 1} using the analysis from Example 2. One can then show that

L0(h) ≤ 2L1(h) ≤ 2L̂sm(h, Ẑ) +
8

mn
+ 20 ‖Γπ‖∞

√
d ln(2m |G|) + ln 2

δ

2mn
.

There may be situations in which this bound is tighter than the one from Example 1, such

as when ρ or κ are very small.

6.5.3 Possibly Unbounded Domains

Until now, I have assumed that the observations are uniformly bounded in the unit ball.

This assumption is common in the literature, but it does not quite match what happens

in practice. Typically, one will rescale each dimension of the input space using the min-

imum and maximum values found in the training data. While this procedure guarantees

a bound on the observations at training time, the bound may not hold at test time when

one rescales by the limits estimated from the training set. This outcome would violate the

preconditions of Lemmas 13 and 14, thereby invalidating the stability guarantees used to

prove the previous examples.

Now, suppose we knew that the observations were bounded with high probability.

In the following example, I construct a hypothetical data distribution under which this

assumption holds. I combine this with Theorem 3 to derive a variant of Example 3.

Example 5. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and G , (V , E). Suppose

the data generating process, D, is defined as follows. For each y ∈ Y , assume there

84



is an associated isotropic Gaussian over X ⊆ Rk, with mean µy ∈ X : ‖µy‖2 ≤ 1

and variance σ2
y ≤ (2k ln(2kn2))

−1. First, Y is sampled according to some arbitrary

distribution, conditioned on G. Then, for each i ∈ [n], conditioned on Yi = yi, a vector

of observations, xi ∈ X , is sampled according to (µyi , σ
2
yi

).

Note that, conditioned on the labels, (y1, . . . , yn), the observations, (x1, . . . , xn),

are mutually independent. It therefore does not make sense to model edge observations,

so I use fij(x,y) , yi⊗ yj . For the following, I abuse the previous notation and letHM3N

denote the class of max-margin Markov networks that use these edge features.

Let BZ , {∃i : ‖Xi‖2 ≥ 2} denote a set of “bad” inputs, and let B denote the

σ-algebra for Z /∈ BZ . Let Γπ
B denote the dependency matrix induced by D, π and B.

Then, with probability at least 1 − δ − m/n over realizations of Ẑ , (Z(l))ml=1, for all

h ∈ HM3N,

LH(h) ≤ L̂h(h, Ẑ)+
11

mn
+

2

n
+4βh

∥∥Γπ
B

∥∥
∞

√
1
2
‖w‖2

2 + d
2

ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

where

βh , 8

(
‖w‖2 +

1

m |G|

)
+ 1.

The proof is provided in Appendix D.7.

Note that the dominating term is 2/n, meaning the bound is meaningful for large

n and small m. This rate follows intuition, since one should not expect η to depend on

the number of training examples; moreover, the probability of drawing a “bad” example

should increase proportionally to the number of independent draws.
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6.6 Discussion

In this chapter, I proposed new PAC-Bayes bounds for structured prediction that use the

local definitions of stability from Section 3.1. Like the covering number-based bound

in the previous chapter, the PAC-Bayes bounds can decrease with both the number of

examples,m, and the size of each example, n. The stability conditions used in this chapter

generalize collective stability, thereby accommodating a broader range of structured loss

functions, including max-margin and soft-max learning.

The examples in Section 6.5 identify several take-aways for practitioners. Primarily,

they indicate the importance of templating (or, parameter-tying). Observe that all of the

bounds depend on d, the number of parameters2, via a term that is Õ(d/n). Clearly, if d

scales linearly with n, the number of nodes, then this term is bounded away from zero as

n→∞. Consequently, one cannot hope to generalize from one example. Though I do not

prove this formally, the intuition is fairly simple: if there is a different wi for each node

i, and wij for each edge {i, j}, then one example provides exactly one “micro example”

from which one can estimate {wi}i∈V and {wij}{i,j}∈E . In this setting, my bounds become

Õ(1/
√
m), which is no better (and no worse) than previous bounds. Thus, templating is

crucial to achieving the fast generalization rate.3

Another observation is that Examples 3 to 5 depend on the norm of the weight vec-

tor, w. Specifically, I used the 2-norm, for its relationship to Gaussian priors; though,

2I believe that this dependence is unavoidable when derandomizing PAC-Bayes bounds for structured
prediction. Evidence to support this conjecture is given by McAllester’s (2007) bound, which depends on
the number templates, and the number of parameters is roughly linear in the number of templates.

3It may be possible to achieve a fast rate without templating if one imposes a sparsity assumption on the
optimal weight vector, but it seems likely that the sparsity would depend on n.
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one could substitute any norm, due to the equivalence of norms in finite dimension. De-

pendence on the norm of the weights is a standard feature of most generalization bounds.

This term is commonly interpreted as a measure of hypothesis complexity. Weight reg-

ularization during training controls the norm of the weights, thereby effectively limiting

the complexity of the learned model.

The structure of the the model influences the bounds via ∆G, the maximum degree

of the graph, and |G|, the total number of nodes and edges. (Since the bounds are sub-

logarithmic in G, and 1
n

ln |G| ≤ 2
n

lnn, one could reasonably argue that ∆G is the only

important structural term.) It is important to note that the edges in the model need not

necessarily correspond to concrete relationships in the data. For example, there are many

ways to define the “influential” neighbors of a user in a social network, though the user

may be connected to nearly everyone in the network; the adjacencies one models may

be a subset of the true adjacencies. Therefore, ∆G and |G| are quantities that one can

control; they become part of the trade-off between representational power and overfitting.

In light of this trade-off, recall that the stability term, βh, partially depends on whether

one conditions on the observations in the edge features; as shown in Examples 4 and 5,

βh can be reduced to O(‖w‖2) if one does not. On the other hand, if observations are

modeled in the edge features, and ∆G = O(
√
n), then the bounds become Õ(1/

√
m).

Thus, under this modeling assumption, controlling the maximum degree is critical.

There are several ways in which my analysis can be refined and extended. In

Lemma 7, which I use to establish the stability of the ramp loss, I used a rather course

application of Hölder’s inequality to isolate the influence of the weights. This technique

ignores the relative magnitudes of the node and edge weights. Indeed, it may be the case
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that the edge weights are significantly lower than the node weights. A finer analysis of

the weights could improve Equation 6.32 and might yield new insights for weight regu-

larization. One could also abstract the desirable properties of the potential functions to

accommodate a broader class than the linear potentials used in our examples. Finally, I

conjecture that the bounds could be tightened by adapting Germain et al.’s (2009) analysis

to bound φ2(h, Ẑ) ,
(
L(h)− L̂(h, Ẑ)

)2 instead of φ(h, Ẑ) , L(Q)− L̂(Q, Ẑ). The pri-

mary challenge would be bounding the moment-generating function, EẐ∼Dm
[
euφ

2(h,Ẑ)
]
,

since my martingale-based method would not work. If successful, this analysis could

yield bounds that tighten when the empirical loss is small.
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Chapter 7: Learning Marginals with Strongly Convex Variational Infer-

ence

In this chapter, I show that learning with a strongly convex free energy results in more

accurate marginal probabilities. I begin with a theoretical motivation for using strongly

convex free energies (Section 7.1), concluding that one should prefer those whose modu-

lus of convexity is constant with respect to the size of the graph. I then demonstrate when

this condition holds for two popular variational techniques (Section 7.2). These insights

suggest a framework for optimizing the strength of convexity in a family of variational

methods (Section 7.2.2). I conclude with an experimental evaluation (Section 7.3), which

verifies that strongly convex free energies can indeed result in more accurate marginals.

The results of this chapter apply to the class of pairwise MRFs introduced in Sec-

tion 2.3. I do not any specific form of the node and edge potentials, nor do I assume that

the model is templated. For simplicity of exposition, I do not consider conditioning on

evidence; therefore, the notation omits X.

7.1 A Case for Strong Convexity

Recall the form of the (variational) free energy, E(µ;θ) = −θ · µ + Φ∗(µ), where Φ∗

(or Φ̃∗ for approximations) is the convex conjugate of the log-partition function, Φ (or
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Φ̃). Because the dot product is linear, the convexity of the free energy is determined by

the convexity of Φ∗ or Φ̃∗. Some approximate conjugates are known to be convex, yet

few studies discuss the strength of convexity, which is defined in Section 2.4. (For this

chapter, I use the definition associated with differentiable functions, Definition 2.)

The true conjugate function, Φ∗, is a strongly convex function of the full probability

table. Since the marginals are a linear function of the probability table, Φ∗ is also a

strongly convex function of M—albeit with an unknown modulus. Approximations of

Φ∗ that are simply convex ignore this fact, and may result in less accurate marginals.

The purpose of this section is to motivate the use of strongly convex free energies.

I start by connecting strong convexity to stability, showing that strong convexity is both

sufficient (Section 7.1.1) and necessary (Section 7.1.2) for uniform stability, which can

be used to derive bounds on the quality of learned marginals (Section 7.1.3). More impor-

tantly, the theory suggests that the modulus of convexity is crucial, and that one should

prefer moduli that are independent of the size of the graph (Section 7.1.4). Proofs from

this section are deferred to Section E.2.

7.1.1 Strong Convexity Guarantees Stability

There is a well-known duality between strong convexity and the Lipschitz continuity of

the gradient.

Definition 18. A differentiable function, ϕ : S → R, has a λ-Lipschitz continuous gradi-
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ent if and only if, for all s, s′ ∈ S,

‖∇ϕ(s)−∇ϕ(s′)‖2 ≤ λ ‖s− s′‖2 . (7.1)

Lemma 10 (Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.1). Let ϕ : S → R

denote a differentiable function, and ϕ? : S? → R its convex conjugate. If ϕ? is κ-

strongly convex, then ϕ has a (1/κ)-Lipschitz continuous gradient.

Since the gradient of Φ̃ corresponds to the pseudomarginals of the distribution, a

strongly convex conjugate function lets us bound the stability of approximate marginal

inference. This is summarized in the following lemma.1

Lemma 11. Assume that Ẽ uses a κ-strongly convex conjugate function, Φ̃∗. Then, for

any θ and θ′,

1√
|G|
‖µ̃(θ)− µ̃(θ′)‖2 ≤

1

κ
√
|G|
‖θ − θ′‖2 . (7.2)

Lemma 11 upper-bounds the root-mean-squared difference between the respective

pseudomarginals of θ and θ′. Observe that one can trivially upper-bound this quantity

by
√

2 by assuming that the marginals are completely different. In contrast, the right-

hand side of Equation 7.2 shrinks as a function of the size of the graph, |G|, and the L2

distance between the potentials, ‖θ − θ′‖2, provided κ is lower-bounded by a function

that is independent of these terms. Of course, since the potentials have length O(|G|),

their L2 distance could be O(
√
|G|); but there are some cases in which the distance could

be small. In Section 7.1.3, I discuss one such scenario and use it to derive a bound on the
1Wainwright derived a similar result (2006, Lemma 6). My lemma is more explicit about the role of the

modulus of convexity.
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root-mean-squared error (RMSE) of learned pseudomarginals.

7.1.2 Convexity Alone Does Not Guarantee Stability

Strong convexity is central to Lemma 11. In fact, there is good reason to believe that

strong convexity is a necessary condition for uniform stability. To understand why, I

return to the relationship between strong convexity and Lipschitz gradients. Lemma 10

states that the former property implies the latter; however, the converse is also true.

Lemma 12 (Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.2). Let ϕ : S → R

denote a differentiable function, and ϕ? : S? → R its convex conjugate. If ϕ has a

λ-Lipschitz continuous gradient, then ϕ? is (1/λ)-strongly convex.

This establishes an equivalence between strong convexity and Lipshitz gradients: ϕ

has a (1/κ)-Lipschitz continuous gradient if and only if ϕ? is κ-strongly convex. In the

context of variational inference, this means that Equation 7.2 holds if and only if Φ̃∗ is

strongly convex. Mere convexity (i.e., κ = 0) is insufficient for guaranteeing stability.

In fact, for any simply convex Φ̃∗, it may be possible to construct an example in which

marginal inference is not stable.

For instance, consider the extreme case in which Φ̃∗ is linear in M̃. This means that

Ẽ is also linear. Mangasarian and Shiau (1987) prove by counterexample that solutions

to linear programs are not Lipschitz continuous (a form of stability) with respect to per-

turbations in the objective coefficients (in this case, the potentials). Therefore, inference

with a linear conjugate function cannot have non-trivial uniform stability. Note that this

insight implies that MAP inference cannot be uniformly stable.
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7.1.3 Stability Yields Learning Guarantees

Equation 7.2 is especially meaningful in the context of learning. Suppose we are trying

to learn a distribution, p(Y;θ?), parameterized by some potentials, θ?. We assume that

the class of models to which θ? belongs is known, and that the variable interactions, de-

fined by a graph G, are fixed. Our goal is to estimate θ? given m independent draws

from the distribution, (y(1), . . . ,y(m)). To do so, we minimize the negative log-likelihood

(NLL) of the variational distribution, p̃, induced by an approximate log-partition, Φ̃. The

approximation is for efficiency, since we make repeated evaluations of the objective dur-

ing learning. Assume that Φ̃∗, the convex conjugate of Φ̃, is κ-strongly convex. Let

L(Y;θ) , − ln p̃(Y;θ) denote the NLL under p̃, and let

Lm(θ) ,
1

m

m∑
j=1

L(y(j);θ). (7.3)

Let

θ̄ , arg min
θ

E [L(Y;θ)] , (7.4)

and θ̂m , arg min
θ

Lm(θ) + Λm ‖θ‖2
2 . (7.5)

If Λm → 0 as m→∞, then θ̄ = limm→∞ θ̂m.

Because Lm uses the approximate log-partition, θ̂m is not a consistent estimator. In

other words, in the limit of infinite data, θ̂m may be different from θ?. Nonetheless, we

have that µ(θ?) = µ̃(θ̄), as shown in Section E.2.2. In light of this, substituting θ̂m and θ̄
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into Equation 7.2, we have that the RMSE of the learned marginals, µ̃(θ̂m), with respect

to the true marginals, µ(θ?), is proportional to the distance between θ̂m and θ̄, divided

by the modulus of convexity, κ. As θ̂m converges to θ̄, the RMSE decreases at a rate that

is inversely proportional to κ.

Convergence of M-estimators has been studied extensively. Many of these works

(e.g., Bickel et al., 2009; Kakade et al., 2010; Ravikumar et al., 2011; Negahban et al.,

2012; Bradley and Guestrin, 2012; Meng et al., 2014) rely on a restricted eigenvalue

(RE) assumption. Essentially, this assumes that the eigenvalues of ∇2L( · ;θ)—which is

independent of Y, and therefore the same as ∇2Lm(θ)—evaluated in the vicinity of θ̄,

are bounded away from zero; meaning, the NLL is strongly convex in a region around

θ̄. I will further assume that, with probability ≥ 1 − δ over draws of the training set,

both θ̄ and θ̂m (which is a random variable) are contained in a convex set within which

∇2L( · ;θ) is positive definite, thereby implying that the NLL is strongly convex in this

set. The minimum eigenvalue of the Hessian (hence, the modulus of convexity) may

depend on δ, m and G, but should be bounded away from zero by a constant as m→∞.

This requirement will always be met if∇2L( · ; θ̄) is positive definite.

Assumption 1. Assume that there exists a constant, γ̄ > 0, such that the minimum eigen-

value of ∇2L( · ; θ̄) is at least γ̄. Further, for any δ ∈ (0, 1) and m ≥ 1, there exists a

convex set, S ⊆ R|θ|, encompassing both θ̄ and θ̂m, and a function, γ(δ,m,G) = Ω(1),

such that, with probability ≥ 1− δ over draws of m i.i.d. examples, the minimum eigen-

value of∇2L( · ;θ) : θ ∈ S is at least γ(δ,m,G).

Combining Assumption 1 and Lemma 11, one can prove a high-probability error
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bound on the marginals of a model learned with strongly convex variational inference.

Proposition 6. Let Λm , 1/
√
m. Assume that Φ̃∗ is κ-strongly convex, that Assumption 1

holds, and that
∥∥θ̄∥∥∞ ≤ 1. Then, for any δ ∈ (0, 1), with probability at least 1− 2δ over

draws of m i.i.d. examples,

1√
|G|

∥∥∥µ̃(θ̂m)− µ(θ?)
∥∥∥

2
≤ |Y|
κ γ(δ,m,G)

√
m

2 +

√
1

2
ln

2 |Y|2 |G|
δ

 . (7.6)

Like most error bounds, Equation 7.6 has an inverse dependence on the square root

of m, so the bound decreases as the training set grows. What is interesting about this

bound is that it incorporates the modulus of convexity, κ, of the variational free energy.

Because of the inverse dependence on κ, the bound tightens as κ grows. Note that the

upper bound for
∥∥θ̄∥∥∞ can be replaced with any constant. Also note that Proposition 6

is easily adapted for the mean-absolute error (MAE), since the RMSE upper-bounds the

MAE.

7.1.4 Prefer a Constant Modulus

Equations 7.2 and 7.6 have an inverse dependence on the modulus of convexity. One

should therefore prefer higher values, leading to sharper bounds. However, stronger con-

vexity might mean that the approximation is looser. For instance, one can trivially boost

the modulus by scaling the conjugate function with a temperature parameter. This reduces

the bounds, but creates a totally entropic distribution. One therefore wonders whether

there is a “right” amount of convexity that trades off stability for marginal accuracy.

One criterion stands out: the modulus should not have an inverse dependence on
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|G|. This insight is the most important takeaway of this section. When learning large

graphical models, it is usually the case that the number of examples is small relative to

the size of the graph. In this setting, κ can have great impact. If κ = Ω(1/ |G|), then

the learning rate (Equation 7.6) is Õ (|G| /√m), which is vacuous for |G| > √m. In

contrast, if κ = Ω(1), then the learning rate is Õ (1/
√
m). This observation motivates the

study of Ω(1)-strongly convex free energies in the next section.

7.2 Strongly Convex Free Energies

In light of Section 7.1.4, it is important to identify strongly convex free energies for which

the modulus of convexity is lower-bounded by a function that does not decrease with |G|.

In this section, I present new guarantees for two popular variational methods. First, I

provide model-dependent conditions under which the tree-reweighted negative entropy

is Ω(1)-strongly convex (Section 7.2.1). To prove this result, I prove a similar claim

for the negative entropy of a tree-structured model (given in Section E.3.1). I also ana-

lyze the class of counting number entropies (which subsumes tree-reweighting), proving

an interesting relationship between the counting numbers and the modulus of convexity

(Section 7.2.2). Using this insight, I then provide a counting number optimization that

guarantees κ-strong convexity, for any κ > 0, independent of the model.

7.2.1 Tree-Reweighting

The tree-reweighted entropy (Wainwright et al., 2005) is a convex combination of tree

entropies. In this section, I give conditions under which its modulus of convexity is
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lower-bounded by a function of the parameters and structural properties, independent of

graph size.

Fix a graph, G, and let T (G) denote its spanning trees. For a tree T , (V , ET ) ∈

T (G), its entropy is given by

HT (µ̃) ,
∑
v∈V

(1− deg(v))Hv(µ̃v) +
∑
e∈ET

He(µ̃e), (7.7)

where deg(v) is the degree of node v, and

Hv(µ̃v) , −
|Y|∑
j=1

µ̃jv log µ̃jv

and He(µ̃e) , −
|Y|∑
i=1

|Y|∑
j=1

µ̃ije log µ̃ije

are the node and edge local entropies. (Equation 7.7 is also the Bethe entropy.) For a

distribution, ρ, over T (G), the tree-reweighted entropy is given by

HTR(µ̃) ,
∑

T∈T (G)

ρ(T )HT (µ̃) (7.8)

=
∑
v∈V

(
1−

∑
e:v∈e

ρ(e)
)
Hv(µv) +

∑
e∈E

ρ(e)He(µe).

Wainwright (2006) showed that if each edge, e ∈ E , has positive marginal proba-

bility, ρ(e) > 0 (i.e., e appears in at least one tree, T , with ρ(T ) > 0), then −HTR is at

least Ω(1/ |G|)-strongly convex. Unfortunately, this modulus decreases as a function of

the size of the graph. This is partly because Wainwright’s analysis considers all models

in the exponential family. Here, I prove a more optimistic lower bound for models that
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exhibit good contraction.

Definition 19. Fix a graph, G , (V , E), and potentials, θ, which induce a probability

density, p. For any (u, v) : {u, v} ∈ E , define the contraction coefficient as

ϑθ(u, v) , sup
y,y′∈Y

‖p (Yu |Yv = y;θ)− p (Yu |Yv = y′;θ)‖TV .

Denote the maximum of the contraction coefficients by

ϑ?θ , sup
(u,v):{u,v}∈E

ϑθ(u, v).

The contraction coefficients measure the dependence between adjacent variables

in a graphical model. A contraction coefficient of 1 implies determinism, and 0 implies

independence. In Section E.3.2, I describe an efficient procedure for computing the con-

traction coefficients in a tree-structured model.

Roughly speaking, the contraction coefficients are determined by the ratio of “local”

signal to “relational” signal. If the local signal is strong, Yv has little influence on Yu. For

models with a sufficiently high ratio of local-to-relational signal, dependence decays with

graph distance at a geometric rate. In this case, one can show that −HT is Ω(1)-strongly

convex (see Section E.3.1). Using this result, one obtains the following.

Proposition 7. Fix a graph, G , (V , E), with maximum degree independent of |V|. Fix a

distribution, ρ, over the spanning trees, T (G), such that there exists a constant, C > 0 :

∀ e ∈ E , ρ(e) ≥ C, that lower-bounds the edge probabilities. Let Θ ⊆ R|θ| denote the set

of potentials such that each tree T ∈ T (G) : ρ(T ) > 0, with maximum degree ∆T , has

98



maximum contraction coefficient ϑ?θ,T ≤ 1/∆T . Let M̃(Θ) , {µ̃(θ) : θ ∈ Θ} denote

the set of pseudomarginals realizable under any θ ∈ Θ. Then, −HTR is Ω(1)-strongly

convex in M̃(Θ).

The proof is given in Section E.4.1. See Section E.4.2 for implications of Proposition 7

for a grid-graph model.

Proposition 7 guarantees Ω(1)-strong convexity, but it still does not identify the

modulus. Further, it is model-dependent, and may not hold for certain potentials. There-

fore, applying Proposition 6 to tree-reweighted variational inference is only meaningful

when learning in a constrained model space that admits good contraction. In the next

section, I describe a technique to tune the modulus to any specified value, regardless of

the model.

7.2.2 Counting Number Optimization

Counting number techniques decompose the entropy into a weighted sum of node and

edge local entropies. For c , ((cv)v∈V , (ce)e∈E), the counting number entropy is

HC(µ̃) ,
∑
v∈V

cvHv(µ̃v) +
∑
e∈E

ceHe(µ̃e). (7.9)

Note that HC generalizes the Bethe entropy (Equation 7.7), which is given by cv = 1 −

deg(v) and ce = 1. One can also recreate the tree-reweighted entropy (Equation 7.8) with

cv = 1−∑e:v∈e ρ(e) and ce = ρ(e). In this section, I show how to find counting numbers

that preserve strong convexity, with a modulus that is lower-bounded by a given value.

Since −Hv and −He are convex, it is clear from Equation 7.9 that −HC is convex
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for nonnegative counting numbers. Heskes (2006) derived more sophisticated sufficient

conditions for convexity by reparameterizing the counting numbers. Specifically, −HC is

convex if there exist nonnegative auxiliary counting numbers, (αv ≥ 0)v∈V , (αe ≥ 0)e∈E

and (αv,e ≥ 0)e∈E,v∈e, such that

∀v ∈ V , cv = αv −
∑
e:v∈e

αv,e, (7.10)

and ∀e ∈ E , ce = αe +
∑
v:v∈e

αv,e. (7.11)

The effect of the auxiliary counting numbers, in particular, αv,e, is to shift weight between

the regular counting numbers, cv and ce. Heskes’ conditions mean that cv can be negative

and still guarantee convexity. One can further show that−HC is strongly convex whenever

αe is uniformly lower-bounded; αv and αv,e, however, are only required to be nonnegative.

Proposition 8. Fix a graph, G , (V , E), and assume that every node is in at least one

edge. If c satisfies Equations 7.10 and 7.11 for some κ > 0, (αv ≥ 0)v∈V , (αe ≥ κ)e∈E

and (αv,e ≥ 0)e∈E,v∈e, then −HC, is (κ/3)-strongly convex.

The proof is given in Section E.5.

Proposition 8 can be used to characterize the strong convexity of a range of algo-

rithms that optimize counting numbers. For example, observing that the Bethe approx-

imation often outperformed tree-reweighting in practice, Meshi et al. (2009) proposed a

“convexified” Bethe approximation. Their algorithm finds a set of counting numbers that

best approximates the Bethe counting numbers, cB, while satisfying Heskes’ convexity
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conditions (Equations 7.10 and 7.11). They also proposed incorporating a constraint that,

for all v ∈ V , cv +
∑

e:v∈e ce = 1; this ensures that the counting numbers are variable-

valid for a fully factored (i.e., edgeless) model. Via Proposition 8, adding a constraint that

αe ≥ 3κ ensures that the resulting negative entropy is κ-strongly convex. This yields the

following constrained quadratic program (QP), which I refer to as the strongly convexified

Bethe approximation:

min
c,α≥0

‖c− cB‖2
2 (7.12)

s.t. ∀v ∈ V , cv +
∑
e:v∈e

αv,e ≥ 0 ;

∀e ∈ E , ce −
∑
v:v∈e

αv,e ≥ 3κ ;

∀v ∈ V , cv +
∑
e:v∈e

ce = 1.

Note that Equation 7.12 only depends on the graph structure; it is independent of the

potentials. Thus, the QP only needs to be solved once, prior to learning, for each example

in the training set. Moreover, examples that have the same structure can use the same

counting numbers. Certain graphs, such as regular graphs, may admit an analytic solution

to Equation 7.12, thereby avoiding numerical optimization.

One can strongly convexify any desired counting numbers. For instance, Hazan

and Shashua (2008) proposed a convex counting number optimization that encourages

ce = 1 uniformly. With a small modification to Equation 7.12, one can make Hazan and

Shashua’s method strongly convex. One can also optimize the tree-reweighted entropy.

Though −HTR is already Ω(1)-strongly convex for certain models (per Proposition 7), it
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may be difficult to identify the modulus. By substituting the tree-reweighted counting

numbers for cB in the objective, one can ensure that −HTR is at least κ-strongly convex,

for any given κ, independent of the model.

For certain graphs and values of κ, the variable validity constraint may make the

optimization infeasible. In these cases, I propose switching to a slackened QP:

min
c,α≥0, ξ

‖c− cB‖2
2 + C ‖ξ‖2

2 (7.13)

s.t. ∀v ∈ V , cv +
∑
e:v∈e

αv,e ≥ 0 ;

∀e ∈ E , ce −
∑
v:v∈e

αv,e ≥ 3κ ;

∀v ∈ V , cv +
∑
e:v∈e

ce = 1 + ξv .

This introduces a free parameter, C ≥ 0, that adjusts the trade-off between fitting the

target counts (in the equation below, the Bethe counts) and variable validity. I explore this

trade-off in Section 7.3.3.

7.3 Experiments

The following empirical evaluation tests the hypothesis that strongly convex free energies

result in better learned marginals, as suggested by Proposition 6. Evaluations of approxi-

mate inference techniques typically use the true model to measure the discrepancy in the

marginals. That is, given the model that generated the data, θ?, most studies measure

‖µ̃(θ?)− µ(θ?)‖, where µ̃(θ?) uses the true model with approximate inference. While

this isolates the quality of the approximation, it ignores the fact that approximate infer-
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ence is typically used both at train and test time. It is therefore valuable to test the quality

of the approximation using a model that is learned with said approximation. Wainwright

(2006) called this “learning the ‘wrong’ graphical model,” since the learned model may

not converge to the true model. I prefer to call it “learning the ‘right’ graphical model for

the ‘wrong’ inference,” since it finds the best parameters for the given variational method.

I therefore report scores for both true and learned models.

7.3.1 Data Generator

The synthetic data generator is based on those used in prior work (e.g., Hazan and Shashua,

2008; Meshi et al., 2009) to evaluate approximate marginal inference. Data is generated

from an (8 × 8) non-toroidal grid-structured model, in which each node, v, is associated

with a binary variable, Yv ∈ {e1, e2}. The model is defined by the following process, for

either “attractive” or “mixed” potentials. First, fix ωs > 0 and ωp > 0. For each node, flip

a fair coin, cv ∈ {±1}, and let wv , ωs cv [ 1
−1 ]. If the model is “attractive,” uniformly

set we , ωp vec
([

1 −1
−1 1

])
, where vec( · ) converts a matrix to a vector; if “mixed,” flip

another fair coin, ce ∈ {±1}, and set we , ωp ce vec
([

1 −1
−1 1

])
. To create local per-

turbations (i.e., evidence), draw a uniformly random xv ∼ U[0, 1] for each node, and

let

∀v, θv , wv xv, and ∀e = {u, v}, θe , we

(xu + xv
2

)
,

Then, the data distribution is defined as

p (Y = y;θ) ,
∑
v∈V

θv · yv +
∑
e∈E

θe · (yu ⊗ yv).
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This is equivalent to an Ising model with field potentials θv ∼ U[−ωs, ωs], and interaction

potentials θe ∼ U[0, ωp], for attractive, or θe ∼ U[−ωp, ωp], for mixed.

7.3.2 Experiment Design

I use four variational methods from the literature:

LBP: The Bethe approximation (i.e., “loopy” BP).

C-Bethe: Meshi et al.’s (2009) convexified Bethe, which is equivalent to Equation 7.12
with κ = 0.

TRBP: Wainwright et al.’s (2005) tree-reweighted BP, with the tree distribution described
in Section E.4.2.

C-Unif: Hazan and Shashua’s (2008) convex counting number optimization, which prefers
ce = 1 uniformly.

Of the four, only the last three are guaranteed to be convex; LBP is not convex on a grid.

TRBP is in fact strongly convex, though the true modulus depends on the model, and may

be difficult to identify. Hazan and Shashua’s method actually enforces strict convexity,

but since the modulus can be arbitrarily close to zero, I consider it effectively just convex.

I also compare strongly convexified versions of C-Bethe, TRBP and C-Unif, using the

counting number optimization. This results in counting numbers that are provably κ-

strongly convex, for a given κ > 0. I denote these versions by SC-Bethe, SC-TRBP and

SC-Unif, respectively, and indicate the value of κ whenever relevant.

For each value of ωs ∈ {0.05, 1} and ωp ∈ {0.1, 0.2, 0.5, 1, 2, 5}, I generate 20

models using the above synthetic generator. Each model acts as a learning trial. For

each model, I compute the true marginal probabilities using exact (junction tree) infer-

ence and sample 100 joint assignments to Y. I use these samples to train a model for

each variational method (and value of κ), using L-BFGS to minimize the regularized
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NLL (Equation 7.5). The regularization parameter, Λm, is set to 1/
√
m, per Proposi-

tion 6. I then compute the node marginals using variational inference with the true (i.e.,

generating) and learned models. For each set of approximate marginals, I compute the

root-mean-squared error (RMSE) with respect to the true, exact marginals. I report the

average RMSE over 20 trials.

Note that size of each example is |G| = 176, which is greater than the number of

examples, m = 100. We thus have a limited number of large examples. According to

Proposition 6, this is a setting in which the modulus of convexity—which determines the

stability of inference—is important.

These experiments are implemented in MATLAB, using data structures from Mark

Schmidt’s Undirected Graphical Models (UGM) toolkit (2013b). To optimize the learn-

ing objective, I use Schmidt’s implementation of L-BFGS with Wolfe line search (2013a).

For exact inference and sampling, I use UGM’s junction tree implementation. For all vari-

ational inference algorithms, I use a custom implementation of counting number belief

propagation (CBP), based on Schwing et al.’s (2011) message updates; this can optimize

any variational method whose entropy can be expressed with counting numbers. To op-

timize the counting number QP (Equation 7.12 or 7.13), I use MATLAB’s quadprog,

with the interior point method. To measure statistical significance, I use a paired t-test,

with rejection threshold .05.
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7.3.3 Results

Due to space restrictions, I defer the full catalog of figures to Appendix F. Figure 7.1

highlights select plots.

Strong Convexity Improves Marginal Inference. Figures F.1a-d plot the RMSE of

the node marginals as a function of the interaction parameter, ωp. Inference is performed

with the true model. The SC methods use the post hoc optimal value of κ (and C) in

the counting number optimization. All methods perform about the same for ωs = 1

and ωp ≤ 2. LBP has a slight advantage for mixed potentials with ωp ≤ 1, which

concurs with previous conclusions (e.g., Meshi et al., 2009) that LBP performs well when

there is strong local signal. Focusing on ωs = .05, the convex methods offer significant

improvement over LBP for ωp ≥ 1 with attractive and ωp ≥ 2 with mixed potentials. This

shows that convexity helps when there is low local-to-relational signal. In particular, note

that the strongly convex methods (TRBP and all SC variants) exhibit dramatically lower

error in this setting (see Figures 7.1a-b), with over 10x improvement over LBP.

Strong Convexity Improves Learned Marginals. Figures F.1e-h also plot RMSE as a

function of ωp, but using the learned model to compute the marginals. The SC methods

yield statistically significant improvements in almost all data models. Figures 7.1c-d

highlight the improvement, which is most prominent when ωs = 1. In certain cases,

SC reduces the error of the convex baselines by over 40%. These results support the

hypothesis of Proposition 6, that using a variational free energy that is provably Ω(1)-

strongly convex can significantly improve the quality of learned marginals. Moreover, the
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Figure 7.1: Select plots of RMSE (averaged over 20 trials) of the approximate node
marginals w.r.t. the true marginals, as a function of the interaction parameter, ωp. Data is
generated with either “attractive” or “mixed” potentials. Figs. (a)-(b) use the true model
for inference, and (c)-(d) use the learned model. The black dotted line is LBP; color
dotted lines are the convex baselines, and solid lines are their SC counterparts, using the
post hoc optimal value of κ (and C for κ ≥ .1). See Section 7.3.3 for discussion and
Appendix F for all figures.
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SC counting number optimization can even improve TRBP—which is already strongly

convex, though the modulus is model-dependent.

Tuning κ in the SC Methods. The value of κ used in the SC counting number opti-

mization can have great impact on the quality of the marginals. The theory in Section 7.1

suggests that increasing the modulus of convexity improves stability and marginal ac-

curacy; however, altering κ affects the quality of the entropy approximation, hence, the

marginals. Thus, there is a trade-off that needs to be explored. Figures F.2 and F.3 plot the

RMSE of the marginals as a function of κ, using the true and learned models respectively,

for select values of ωs and ωp. Since values of κ ≥ .1 result in non-variable-valid count-

ing numbers for this grid, I use the slackened QP and report the score for the post hoc

optimal C. These plots yield the following insights. When the true potentials are given,

and the model has low local-to-relational signal (ωs = .05, ωp ≥ 2), any modulus of con-

vexity above a certain threshold yields significant improvement. When using variational

inference for training, if there is low local signal (ωs = .05), use the highest value of κ

that supports variable validity. Since the local signal is weak, it is even more important

to be variable-valid. If local signal is strong (ωp = 1), one can relax variable validity and

push κ further.

Slackened Variable Validity. When using a value of κ that requires slackening variable

validity, this requires selecting a value for the slack parameter, C. The quality of the

slackened solution can vary with C, since this parameter controls the trade-off between

variable validity and fitting the target counts. Figures F.4 and F.5 show select plots of
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RMSE as a function of C, focusing on the Bethe and tree-reweighted approximations.

Data is generated using mixed potentials. In general, we find that the optimal value of C

depends on κ, with lower values of κ favoring lower values of C. This is likely because

lower C makes it easier for the QP solver to reduce the slack variables. When training

with κ ≥ .1, a good rule of thumb is to set C fairly high; I found that C = 100 works

well overall.

7.4 Discussion

In this chapter, I have shown, both theoretically and empirically, that variational inference

with a strongly convex free energy can improve the accuracy of marginal probabilities.

I proved sufficient conditions under which two popular variational methods are strongly

convex, and proposed a novel counting number optimization that guarantees κ-strong con-

vexity, for any κ. The experimental results indicate that using this approach to specify a

modulus can dramatically reduce the error of approximate marginal inference, suggesting

substantial, tangible benefit to applications of graphical models.

The fact that the counting number QP only depends on the graph structure raises

several interesting questions for future research. First, are there graphs for which the QP

can be simplified, so as to scale to very large graphs? On a related note, are there graphs

that admit an analytic solution? Finally, are there general structural conditions under

which one can solve the QP for some range of κ?
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Chapter 8: Conclusion

I have demonstrated that the stability of inference is a critical factor in the design and

analysis of structured prediction. I derived generalization bounds that decrease with both

the number of examples and the size of each example, meaning it is possible to learn

from a few large examples, or even just one giant example. The bounds highlight the

importance of inference stability as a sufficient condition for improved generalization.

I also investigated the benefits of learning with strongly convex variational inference,

which resulted in a new variational technique that can strongly convexify a variety of

free energies. This technique yields better learned marginals due to the duality between

strong convexity and stability, which once more underlines the significance of inference

stability. The overriding theme to this work is that stable predictors and loss functions

improve learning, both in theory in practice.

The effects of stability can be viewed a number of ways. Stability can be seen as

promoting robustness to noise, which is essentially random, local perturbations. From the

perspective of hypothesis complexity, stability can be viewed as regulating expressivity.

In the bias-variance view of learning, stability controls the variance. These properties all

contribute to better learning guarantees.

Yet, what this means for practitioners is more than just some elegant theory; it
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means that we can do more with fewer examples. Though we are living in the so-called

age of “big data,” much of it is unlabeled. To train successful structured predictors, we

can either develop better unsupervised or semi-supervised methods, or we can develop

supervised methods that can effectively learn from limited data. I have focused on super-

vised learning and shown that inference stability is a criterion one can optimize to gain

more accuracy from fewer examples.

8.1 Future Directions

One of the foremost challenges in modern artificial intelligence is automated knowledge

base construction. This task typically involves extracting and reasoning about knowledge

from public data sources, such as the World Wide Web and social media. Many leading

approaches (e.g., Jiang et al., 2012; Pujara et al., 2013) use some form of collective rea-

soning to infer unknown facts and resolve mentions to their canonical entities. I posit that

inference stability is critically important in this setting, due to the enormous scale of the

knowledge representation and the fact that the data source is dynamic.

When constructing a knowledge base, the evidence grows and evolves as over time.

Each newly integrated document prompts the system to update its inferences over the

remaining unknowns.1 Incorporating new evidence into collective reasoning is challeng-

ing; since a new observation can affect multiple related unknowns, updating inference

can require recomputing all predictions. For example, suppose the knowledge base is

represented by a large probalistic graphical model, and that inference involves comput-

1For simplicity of exposition, I assume that the model has already been learned and deployed. Though,
in practice, the system may also update the model parameters.
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ing the MAP assignment. Though there exists an algorithm for exactly2 updating MAP

assignments (Sümer et al., 2011), in the worst case, it is linear in the number of changed

assignments. Thus, for applications with very large structure, such as knowledge base

construction, updating inference can be very expensive.

However, suppose one could guarantee that the post-update predictions would not

differ substantially from the pre-update predictions. Then one could guarantee that updat-

ing MAP inference would be efficient. Another option (proposed by Pujara et al., 2015)

is to approximate the full inference update by conditioning on on a set of previous predic-

tions, meaning only the active (i.e., unfixed) variables need to be updated. The complexity

of this operation is linear in the size of the active set. If one could guarantee that the ap-

proximate update would not significantly differ from the full inference update, one could

potentially achieve a massive speedup in update time with minimal approximation error.

The dominant idea is that stable inference algorithms enable faster inference updates.

We should therefore design inference algorithms with collective stability guaran-

tees. Of particular interest are algorithms that compute joint assignments, such as MAP

inference. Though the theoretical insights of Section 7.1.2 suggest that MAP inference

cannot attain uniform collective stability, perhaps there are conditions under which it is

locally stable. Moreover, there may be approximate inference algorithms that compro-

mise full collective reasoning so as to improve collective stability. For example, one

could decompose the global inference optimization into independent local optimizations,

similar to the technique of decomposed learning (Samdani and Roth, 2012). The study

of collectively stable (approximate) MAP inference is a rich area of future research that

2To my knowledge, this algorithm does not apply to approximate MAP inference.
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could have great impact on automated knowledge base construction and other large-scale

applications of online structured prediction.
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Appendix A: Technical Lemmas from Section 2.3.4

This appendix contains two technical lemmas deferred from Section 2.3.4. For the fol-

lowing, the potential functions are defined using the linear node features (Equation 2.7)

and edge features (Equation 2.8).

Lemma 13. Fix a graph, G , (V , E), with maximum degree ∆G. Suppose X is uniformly

bounded by the p-norm ball with radius R; i.e., supx∈X ‖x‖p ≤ R. Then, for any x,x′ ∈

X n and y ∈ Yn,

‖f(x,y)− f(x′,y)‖p ≤ (∆G + 2)RDH(x,x′). (A.1)

Further, if the model does not use edge observations (i.e., fij(x,y) , yi ⊗ yj), then

‖f(x,y)− f(x′,y)‖p ≤ 2RDH(x,x′). (A.2)

Proof We start by considering a pair, x,x′ ∈ X n : DH(x,x′) = 1, that differ at a single

coordinate, corresponding to a node i. This means that the aggregate features differ at one
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local feature, and any edge involving i. Thus, using the triangle inequality, we have that

‖f(x,y)− f(x′,y)‖p =

∥∥∥∥∥∥∥∥
 fi(x,y)− fi(x′,y)∑

j:{i,j}∈E fij(x,y)− fij(x′,y)


∥∥∥∥∥∥∥∥
p

≤ ‖fi(x,y)− fi(x′,y)‖p

+
∑

j:{i,j}∈E

‖fij(x,y)− fij(x′,y)‖p . (A.3)

Note that the second term disappears when the model does not use edge observations.

Recall that the features are defined using a Kronecker product. For any vectors u,v,

‖u⊗ v‖p = ‖u‖p ‖v‖p. Using this identity, and the fact that each y ∈ Y has ‖y‖1 = 1,

we have that

‖fi(x,y)− fi(x′,y)‖p = ‖(xi − x′i)⊗ yi‖p

= ‖xi − x′i‖p ‖yi‖p

≤
(
‖xi‖p + ‖x′i‖p

)
× 1

≤ 2R,

115



and

‖fij(x,y)− fij(x′,y)‖p =

∥∥∥∥∥∥∥∥
1

2


xi
xj

−
x′i
xj


⊗ (yi ⊗ yj)

∥∥∥∥∥∥∥∥
p

=
1

2
‖xi − x′i‖p ‖yi‖p ‖yj‖p

≤ 1

2

(
‖xi‖p + ‖x′i‖p

)
× 1× 1

≤ R.

Combining these inequalities with Equation A.3, and using the fact that i participates in

at most ∆G edges, we have that

‖f(x,y)− f(x′,y)‖p ≤ 2R +
∑

j:{i,j}∈E

R ≤ (2 + ∆G)R.

For no edge observations, the righthand side is simply 2R. Thus, since the bounds hold

for any single coordinate perturbation, Equations A.1 and A.2 follow from the triangle

inequality.

Lemma 14. Fix a graph, G , (V , E), and recall that |G| , |V| + |E|. Suppose X is

uniformly bounded by the p-norm ball with radius R; i.e., supx∈X ‖x‖p ≤ R. Then, for

all x ∈ X n and y ∈ Yn,

‖f(x,y)‖p ≤ |G|R.
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Proof Invoking the triangle inequality, we have that

‖f(x,y)‖p =

∥∥∥∥∥∥∥∥

∑

i∈V fi(x,y)∑
{i,j}∈E fij(x,y)


∥∥∥∥∥∥∥∥
p

≤
∑
i∈V

‖fi(x,y)‖p +
∑
{i,j}∈E

‖fij(x,y)‖p

=
∑
i∈V

‖xi ⊗ yi‖p +
∑
{i,j}∈E

∥∥∥∥∥∥∥∥
1

2

xi
xj

⊗ (yi ⊗ yj)

∥∥∥∥∥∥∥∥
p

=
∑
i∈V

‖xi‖p ‖yi‖p +
∑
{i,j}∈E

1

2

∥∥∥∥∥∥∥∥
xi
xj


∥∥∥∥∥∥∥∥
p

‖yi‖p ‖yj‖p

≤
∑
i∈V

‖xi‖p ‖yi‖p +
∑
{i,j}∈E

1

2

(
‖xi‖p + ‖xj‖p

)
‖yi‖p ‖yj‖p

≤
∑
i∈V

R× 1 +
∑
{i,j}∈E

1

2
(R +R)× 1× 1

= (|V|+ |E|)R = |G|R,

which completes the proof.
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Appendix B: Proofs from Chapter 4

This appendix contains the deferred proofs from Section 6.5. We begin with some sup-

plemental background in measure concentration. We then prove Proposition 1, and derive

a concentration inequality implied by the result. We conclude with the proofs of Proposi-

tions 2 and 3.

B.1 The Method of Bounded Differences

Our proof of Proposition 1 follows McDiarmid’s method of bounded differences (McDi-

armid, 1989), which uses a construction known as a Doob martingale difference sequence.

Let ϕ : Zn → R denote a measurable function. Let Z , (Zi)
n
i=1 denote a set of random

variables with joint distribution D, and let µ , E[ϕ(Z)] denote the mean of ϕ. For i ∈ [n],

let

Vi , E[ϕ(Z) |Z1:i]− E[ϕ(Z) |Z1:i−1],

where V1 , E[ϕ(Z) |Z1] − µ. The sequence (V1, . . . , Vn) has the convenient property

that
n∑
i=1

Vi = ϕ(Z)− µ.
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Therefore, using the law of total expectation, we have that, for any τ ∈ R,

E
[
eτ(ϕ(Z)−µ)

]
= E

[
n∏
i=1

eτVi

]

= E

[(
n−1∏
i=1

eτVi

)
E
[
eτVn |Z1:n−1

]]

≤ E

[
n−1∏
i=1

eτVi

]
sup

z∈Zn−1

E
[
eτVn |Z1:n−1 = z

]
...

≤
n∏
i=1

sup
z∈Zi−1

E
[
eτVi |Z1:i−1 = z

]
. (B.1)

Note that the order in which we condition on variables is arbitrary, and does not neces-

sarily need to correspond to any spatio-temporal process. The important property is that

the sequence of σ-algebras generated by the conditioned variables are nested (McDiarmid

(1998) called this a filter), which is guaranteed by the construction of (V1, . . . , Vn).

One can then use Hoeffding’s lemma (Hoeffding, 1963) to bound each term in the

above product.

Lemma 15. If ξ is a random variable, such that E[ξ] = 0 and a ≤ ξ ≤ b almost surely,

then for any τ ∈ R,

E
[
eτξ
]
≤ exp

(
τ 2(b− a)2

8

)
.

Clearly, E[Vi |Z1:i−1] = 0. Thus, if, for all i ∈ [n], there exists a value ci ≥ 0 such that

sup
z∈Zi−1

sup
z∈Z

(Vi)− inf
z′∈Z

(Vi) = sup
z∈Zi−1

z,z′∈Z

E [ϕ(Z) |Z1:i = (z, z)]−E [ϕ(Z) |Z1:i = (z, z′)] ≤ ci,
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then

E
[
eτ(ϕ(Z)−µ)

]
≤

n∏
i=1

exp

(
τ 2c2

i

8

)
= exp

(
τ 2

8

n∑
i=1

c2
i

)
.

When Z1, . . . , Zn are mutually independent, and ϕ has β-uniformly stability, upper-

bounding ci is straightforward; it becomes complicated when we relax the independence

assumption, or when ϕ is not uniformly stable. The following section addresses the for-

mer challenge.

B.2 Coupling

To analyze interdependent random variables, we use a theoretical construction known as

coupling. For random variables Z1 and Z2, with respective distributions D1 and D2 over a

common sample space Z , a coupling is any joint distribution D̂ over Z ×Z such that the

marginal distributions, D̂(Z1) and D̂(Z2), are equal to D1(Z1) and D2(Z2) respectively.

Using a construction due to Fiebig (1993), one can create a coupling of two se-

quences of random variables, such that the probability that any two corresponding vari-

ables are different is upper-bounded by the ϑ-mixing coefficients in Definition 9. The

following is an adaptation of this result (due to Samson, 2000) for continuous domains.

Lemma 16. Let Z(1) , (Z
(1)
i )ni=1 and Z(2) , (Z

(2)
i )ni=1 be random variables with respec-

tive distributions D1 and D2 over a sample space Zn. Then there exists a coupling D̂,

with marginal distributions D̂(Z(1)) = D1(Z(1)) and D̂(Z(2)) = D2(Z(2)), such that, for

any i ∈ [n],

Pr
(Z(1),Z(2))∼D̂

{
Z

(1)
i 6= Z

(2)
i

}
≤
∥∥∥D1

(
Z

(1)
i:n

)
− D2

(
Z

(2)
i:n

)∥∥∥
TV
,
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where Pr(Z(1),Z(2))∼D̂
{
Z

(1)
i 6= Z

(2)
i

}
denotes the marginal probability that Z(1)

i 6= Z
(2)
i

under D̂.

Note that the requirement of strictly positive densities is not restrictive, since one can

always construct a positive density from a simply nonnegative one. We defer to Samson

(2000) for details.

We are now equipped with the tools to prove Proposition 1.

B.3 Proof of Moment-Generating Function Bound (Proposition 1)

Conditioned on B, every realization of Z is in the “good” set. We define a Doob martin-

gale difference sequence, using the filtration π:

V π
i , E

[
ϕ(Z) | B,Zπi(1:i)

]
− E

[
ϕ(Z) | B,Zπi(1:i−1)

]
,

where V π
1 , E[ϕ(Z) | B,Zπi(1)]−E[ϕ(Z) | B]. Note that E[V π

i | B] = 0 and, for Z /∈ BZ ,

n∑
i=1

V π
i = ϕ(Z)− E[ϕ(Z) | B].

We therefore have, via Equation B.1, that

E
[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤

n∏
i=1

sup
z∈Zi−1

B

E
[
eτV

π
i | B,Zπi(1:i−1) = z

]
,

where the supremum over z ∈ Z i−1

B ensures that Zπi(1:i−1) = z does not contradict

B. Recall that each permutation in π has the same prefix, thus preserving the order of
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conditioned variables, and ensuring that the sequence of σ-algebras is nested.

What remains is to show that, for all i ∈ [n],

sup
z∈Zi−1

B

sup
z∈ZB

V π
i − inf

z′∈ZB
V π
i

= sup
z∈Zi−1

B
z,z′∈ZB

E
[
ϕ(Z) | B,Zπi(1:i) = (z, z)

]
− E

[
ϕ(Z) | B,Zπi(1:i) = (z, z′)

]
(B.2)

is bounded, so as to apply Lemma 15. (Again, the supremum over z, z′ ∈ ZB ensures

consistency between Zπi(1:i) = (z, z), Zπi(1:i) = (z, z′) and B.) To do so, we will use

the coupling construction from Lemma 16. Fix any z ∈ Z i−1

B and z, z′ ∈ ZB, and let

N , n− i. Define random variables ξ(1) , (ξ
(1)
j )Nj=1 and ξ(2) , (ξ

(2)
j )Nj=1, with coupling

distribution D̂ such that

D̂
(
ξ(1)
)
, D

(
Zπi(i+1:n) | B,Zπi(1:i) = (z, z)

)
and D̂

(
ξ(2)
)
, D

(
Zπi(i+1:n) | B,Zπi(1:i) = (z, z′)

)
. (B.3)

In other words, the marginal distributions of ξ(1) and ξ(2) are equal to the conditional

distributions of Zπi(i+1:n) given B and, respectively, Zπi(1:i) = (z, z) or Zπi(1:i) = (z, z′).

Note that we have renumbered the coupled variables according to πi. This does not affect

the distribution, but it does affect how we later apply Lemma 16. Denote by π−1
i the

inverse of πi (i.e., π−1
i (πi(1 : n)) = [n]), and let

ψ(z) = ϕ
(
zπ−1

i (1:n)

)
.
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Put simply, ψ inverts the permutation applied to its input, so as to ensure ψ(zπi(1:n)) =

ϕ(z). For convenience, let

∆ψ , ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)

denote the difference. Using these definitions, we have the following equivalence:

E
[
ϕ(Z) | B,Zπi(1:i) = (z, z)

]
−E

[
ϕ(Z) | B,Zπi(1:i) = (z, z′)

]
= E

[
ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)]
.

Because the expectations are conditioned onB, both realizations, (z, z, ξ(1)) and (z, z′, ξ(2)),

are “good,” in the sense that Equation 3.1 holds. We therefore have that

E
[
ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)]
≤ β E

[
DH((z, z, ξ(1)), (z, z′, ξ(2)))

]
≤ β

(
1 + E

[
N∑
j=1

1{ξ(1)
j 6= ξ

(2)
j }
])

= β

(
1 +

N∑
j=1

Pr
(Z(1),Z(2))∼D̂

{
ξ

(1)
j 6= ξ

(2)
j

})
.

In the second inequality, we assumed that z 6= z′. Recall from Lemma 16 and Definition 9

123



that

1 +
N∑
j=1

Pr
(Z(1),Z(2))∼D̂

{
ξ

(1)
j 6= ξ

(2)
j

}
≤ 1 +

n∑
j=i+1

∥∥D (Zπi(j:n) | B,Zπi(1:i) = (z, z)
)
− D

(
Zπi(j:n) | B,Zπi(1:i) = (z, z′)

)∥∥
TV

= 1 +
n∑

j=i+1

ϑπ
ij(z, z, z

′)

≤ 1 +
n∑

j=i+1

γπij =
n∑
j=i

γπij.

This holds uniformly for all valid z ∈ Z i−1

B and z, z′ ∈ ZB; thus,

sup
z∈Zi−1

sup
z∈Z

V π
i − inf

z′∈Z
V π
i = sup

z∈Zi−1

z,z′∈Z

E
[
ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)]
≤ β

n∑
j=i

γπij.

Then, since we have identified a uniform upper bound for Equation B.2, we apply Lemma 15

and obtain

E
[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤ exp

τ 2

8

n∑
i=1

(
β

n∑
j=i

γπij

)2


≤ exp

τ 2

8
nβ2 max

i∈[n]

(
n∑
j=i

γπij

)2


= exp

(
τ 2

8
nβ2

∥∥Γπ
B

∥∥2

∞

)
,

which completes the proof.
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B.4 Proof of Concentration Inequality (Corollary 1)

First, note that, for any τ ∈ R,

Pr {ϕ(Z)− E[ϕ(Z)] ≥ ε} = Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
,

due to the monotonicity of exponentiation. We then apply Markov’s inequality and obtain

Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
≤ 1

eτε
E
[
eτ(ϕ(Z)−E[ϕ(Z)])

]
.

Since ϕ has β-uniform stability, we can apply Proposition 1 by taking BZ , ∅. Thus,

Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
≤ 1

eτε
exp

(
τ 2

8
nβ2 ‖Γπ‖2

∞

)
.

Optimizing with respect to τ , we take τ , 4ε
nβ2‖Γπ‖2∞

to complete the proof.

B.5 Proof of Proposition 2

We construct the filtration π recursively. We initialize π1 using a breadth-first traversal of

the graph, starting from any node. Then, for i = 2, . . . , n, we set πi(1 : i− 1) , πi−1(1 :

i − 1), and determine πi(i : n) using a breadth-first traversal over the induced subgraph

of πi−1(i : n), starting from πi−1(i − 1). This ensures that nodes closer to πi(i) appear

earlier in the permutation, so that the higher mixing coefficients are not incurred for all

j = i+ 1, . . . , n.

125



The degree of any node in this induced subgraph is at most the maximum degree of

the full graph, ∆G, so the number of nodes at distance k from node πi(i) is at most ∆k
G.

Hence, the number of subsets, πi(j : n) : j > i, at distance k from πi(i) is at most ∆k
G.

Therefore,
n∑
j=i

γπij ≤
∞∑
k=0

∆k
G ϑ(k) ≤

∞∑
k=0

(
∆G

∆G + ε

)k
.

Since ∆G/(∆G + ε) < 1 for ε > 0, this geometric series converges to

1

1−∆G/(∆G + ε)
= 1 + ∆G/ε,

which completes the proof.

B.6 Proof of Proposition 3

For a chain graph, we define each permutation uniformly as πi , [n]. Each upper-

triangular entry of Γπ
Σ then satisfies γπij ≤ ϑ(j−i). The number of unconditioned variables

at distance k = j − i is exactly one. Thus, for any row i,

n∑
j=i

γπij ≤ 1 +
n−i∑
k=1

ϑ(k) ≤ 1 + ε
n−i∑
k=1

k−p.

For p = 1, (k−p)∞k=1 is a Harmonic series. Thus, the partial sum,
∑n−i

k=1 k
−p, is the (n−i)th

Harmonic number, which is upper-bounded by ln(n− i)+1, and maximized at row i = 1.

For p > 1,

1 + ε
n−i∑
k=1

k−p ≤ 1 + ε
∞∑
k=1

k−p = 1 + ζ(p),

126



by definition.
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Appendix C: Proofs from Chapter 5

This appendix contains the deferred proofs from Chapter 5.

C.1 Proof of Lemma 2

For any assignments z, z′ ∈ Zn, let I , {i ∈ [n] : zi 6= z′i} denote the set of coordinates

at which their values differ. By definition, for any h ∈ H,

‖(c ◦ h)(z)− (c ◦ h)(z′)‖1 =
n∑
j=1

∣∣c(yj, hj(x))− c(y′j, hj(x′))
∣∣

=
∑
i∈I

|c(yi, hi(x))− c(y′i, hi(x′))|

+
∑
j 6∈I

|c(yj, hj(x))− c(yj, hj(x′))| . (C.1)

Focusing on the first sum, for any i ∈ I, we have via the first admissibility condition that

|c(yi, hi(x))− c(y′i, hi(x′))| ≤ |c(yi, hi(x))− c(yi, hi(x′))|+ |c(yi, hi(x′))− c(y′i, hi(x′))|

≤ |c(yi, hi(x))− c(yi, hi(x′))|+M.
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Therefore,

∑
i∈I

|c(yi, hi(x))− c(y′i, hi(x′))| ≤M |I|+
∑
i∈I

|c(yi, hi(x))− c(yi, hi(x′))|

= M DH(z, z′) +
∑
i∈I

|c(yi, hi(x))− c(yi, hi(x′))| .

Combining this with Equation C.1, we have that

‖(c ◦ h)(z)− (c ◦ h)(z′)‖1 ≤M DH(z, z′) +
n∑
j=1

|c(yj, hj(x))− c(yj, hj(x′))|

≤M DH(z, z′) + λ ‖h(x)− h(x′)‖1

≤M DH(z, z′) + λβ DH(z, z′),

where we have used the second admissibility condition, then uniform collective stability.

C.2 Proof of Lemma 3

By definition, cρ is bounded by [0,1], which trivially establishes that it is 1-uniformly

range-bounded, thereby satisfying the first admissibility condition. Fix any µ and µ′, and

let

u , arg max
y′∈Y:y 6=y′

〈y′, µ〉 and u′ , arg max
y′∈Y:y 6=y′

〈y′, µ′〉 .

Without loss of generality, assume that

〈y, µ〉 − 〈u, µ〉 ≥ 〈y, µ′〉 − 〈u′, µ′〉 .
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Then, for any y ∈ Y , we have that

|(〈y, µ〉 − 〈u, µ〉)− (〈y, µ′〉 − 〈u′, µ′〉)| = 〈y, µ− µ′〉+ 〈u′, µ′〉 − 〈u, µ〉

≤ 〈y, µ− µ′〉+ 〈u′, µ′〉 − 〈u′, µ〉

= 〈y − u′, µ− µ′〉

≤ ‖y − u′‖∞ ‖µ− µ′‖1

≤ ‖µ− µ′‖1 .

Further, for any δ, δ′ ∈ R,

|rρ(δ)− rρ(δ′)| ≤
∣∣∣∣1− δρ − 1− δ′

ρ

∣∣∣∣ =
1

ρ
|δ − δ′| .

Combining these inequalities, we have that

|cρ(y, µ)− cρ(y, µ′)| ≤
1

ρ
‖µ− µ′‖1 ,

which establishes the second admissibility condition.

C.3 Proof of Lemma 4

Fix any hypothesis, h ∈ H1
SC, with weights w. Fix any two inputs, x,x′ ∈ X n, and let

µ̃(x) , min
µ̃∈M̃

Ẽ(µ̃ |x; w) and µ̃(x′) , min
µ̃∈M̃

Ẽ(µ̃ |x′; w)
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denote their respective conditional pseudomarginals. By assumption, the variational free

energy,

Ẽ(µ̃ |x; w) = −w · f(x, µ̃) + Φ̃∗(µ̃),

uses a conjugate function, Φ̃∗, that is κ-strongly convex with respect to the 1-norm. There-

fore, applying Lemma 1, we have that

‖µ̃(x)− µ̃(x′)‖2
1 =

1

2
‖µ̃(x′)− µ̃(x)‖2

1 +
1

2
‖µ̃(x)− µ̃(x′)‖2

1

≤ 1

κ

(
Ẽ(µ̃(x′) |x; w)− Ẽ(µ̃(x) |x; w)

)
+

1

κ

(
Ẽ(µ̃(x) |x′; w)− Ẽ(µ̃(x′) |x′; w)

)
=

1

κ

(
−w · (f(x, µ̃(x′))− f(x, µ̃(x))) + Φ̃∗(µ̃(x′))− Φ̃∗(µ̃(x))

)
+

1

κ

(
−w · (f(x′, µ̃(x))− f(x′, µ̃(x′))) + Φ̃∗(µ̃(x))− Φ̃∗(µ̃(x′))

)
=

1

κ
w · (f(x, µ̃(x))− f(x′, µ̃(x)))

+
1

κ
w · (f(x′, µ̃(x′))− f(x, µ̃(x′)))

≤ 1

κ
‖w‖2 ‖f(x, µ̃(x))− f(x′, µ̃(x))‖2

+
1

κ
‖w‖2 ‖f(x′, µ̃(x′))− f(x, µ̃(x′))‖2 .

The last inequality uses Cauchy-Schwarz. Via Lemma 13 (Equation A.1) since we assume

that supx∈X ‖x‖2 ≤ 1, we have that

‖f(x, µ̃(x))− f(x′, µ̃(x))‖2 ≤ (∆G + 2)DH(x,x′)

and ‖f(x′, µ̃(x′))− f(x, µ̃(x′))‖2 ≤ (∆G + 2)DH(x,x′).
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(The fact that we use the pseudomarginals instead of the basis vectors does not matter;

what matters is that both output types obey the simplex constraint.) Then, leveraging the

fact that ‖w‖2 ≤ 1, we have that

‖µ̃(x)− µ̃(x′)‖2
1 ≤

2

κ
(∆G + 2)DH(x,x′).

Taking the square root of both sides, and noting that
√
DH(x,x′) ≤ DH(x,x′), completes

the proof.

C.4 Proof of Lemma 5

The proof requires the following technical lemma.

Lemma 17. The d-dimensional hypercube, [0,Λ]d, admits an ε-cover, under the 1-norm,

of cardinality
⌈(

Λd
2ε

)d⌉.

Proof Partition the hypercube into k smaller hypercube cells, each with edge length

(2ε/d). It is straightforward to show that any point within each cell is within L1 distance

ε from the center of the cell. Therefore, the hypercube is ε-covered by the centers of the

cells. To find the minimum number of cells needed, we let k(2ε/d)d ≥ Λd and solve for

k, then round up to the nearest integer.

Note that H1
SC is essentially just the d-dimensional unit ball of weight vectors. We

will construct a cover of this space, effectively discretizing the hypothesis space. Then,

using the strong convexity of the variational free energy—similar to the same way we did
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in the proof of Lemma 4—we will show that this discretization covers the output space.

The unit ball has diameter 2, and is thus contained in a hypercube with side length 2.

Therefore, to ε-cover the unit ball, it suffices to construct an ε-covering of the hypercube

[0, 2]d, then translate the points by −1 in all dimensions and take the intersection with the

unit ball. For some ε′ to be defined later, let C ⊆ {w′ ∈ Rd : ‖w′‖2 ≤ 1} denote this

covering. By definition, every w ∈ H1
SC is at most ε′ L1 distance from some w′ ∈ C.

Further, by Lemma 17, |C| ≤
⌈(

d
ε′

)d⌉.

Fix any w ∈ H1
SC, and let w′ ∈ C denote its closest vector. For any input, x ∈ X n,

let

µ̃(w) , min
µ̃∈M̃

Ẽ(µ̃ |x; w) and µ̃(w′) , min
µ̃∈M̃

Ẽ(µ̃ |x; w′)

denote the respective conditional pseudomarginals. Since the variational free energy, Ẽ,

is κ-strongly convex, we can apply Lemma 1, like we did in the proof of Lemma 4, and

obtain

‖µ̃(w)− µ̃(w′)‖2
1 =

1

2
‖µ̃(w′)− µ̃(w)‖2

1 +
1

2
‖µ̃(w)− µ̃(w′)‖2

1

≤ 1

κ

(
Ẽ(µ̃(w′) |x; w)− Ẽ(µ̃(w) |x; w)

)
+

1

κ

(
Ẽ(µ̃(w) |x; w′)− Ẽ(µ̃(w′) |x; w′)

)
=

1

κ

(
−w · (f(x, µ̃(w′))− f(x, µ̃(w))) + Φ̃∗(µ̃(w′))− Φ̃∗(µ̃(w))

)
+

1

κ

(
−w′ · (f(x, µ̃(w))− f(x, µ̃(w′))) + Φ̃∗(µ̃(w))− Φ̃∗(µ̃(w′))

)
=

1

κ
(w −w′) · f(x, µ̃(w)) +

1

κ
(w′ −w) · f(x, µ̃(w′))

≤ 1

κ
‖w −w′‖1 ‖f(x, µ̃(w))‖∞ +

1

κ
‖w′ −w‖1 ‖f(x, µ̃(w′))‖∞
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The last line uses Hölder’s inequality. We have constructed C such that ‖w −w′‖1 ≤ ε′.

To bound ‖f(x, µ̃(w))‖∞ and ‖f(x, µ̃(w′))‖∞, we could use Lemma 14, but this yields

a loose upper bound for the∞-norm. We will therefore use a special analysis.

Observe that

‖f(x, µ̃)‖∞ =

∥∥∥∥∥∥∥∥

∑

i∈V fi(x, µ̃)∑
{i,j}∈E fij(x, µ̃)


∥∥∥∥∥∥∥∥
∞

= max


∥∥∥∥∥∑
i∈V

fi(x, µ̃)

∥∥∥∥∥
∞

,

∥∥∥∥∥∥
∑
{i,j}∈E

fij(x, µ̃)

∥∥∥∥∥∥
∞



Since ‖x‖2 ≤ 1, and ‖µ̃‖1 = 1, it can be shown, using an analysis similar to Lemma 14,

that ∥∥∥∥∥∑
i∈V

fi(x, µ̃)

∥∥∥∥∥
∞

≤ |V| and

∥∥∥∥∥∥
∑
{i,j}∈E

fij(x, µ̃)

∥∥∥∥∥∥
∞

≤ |E| .

Since G has maximum degree ∆G, |E| ≤ n∆G. For a graph with at least one edge,

∆G ≥ 1, meaning |V| = n ≤ n∆G. We can therefore use

‖f(x, µ̃)‖∞ ≤ n∆G.

Putting the pieces together, we have that

‖µ̃(w)− µ̃(w′)‖1 ≤
√

2n∆Gε′

κ
.

To satisfy Definition 12, we need to show that, for every w ∈ H1
SC, there exists a w′ ∈ C
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such that

sup
x∈Xn

1

n |Y| ‖µ̃u(w)− µ̃u(w
′)‖1 ≤ ε,

where µ̃u selects only the unary clique (i.e., node) pseudomarginals. (The n |Y| in the

denominator is the length of the resulting pseudomarginal vector.) If we set

ε′ ,
κnε2 |Y|2

2∆G

,

then

sup
x∈Xn

1

n |Y| ‖µ̃u(w)− µ̃u(w
′)‖1 ≤ sup

x∈Xn

1

n |Y| ‖µ̃(w)− µ̃(w′)‖1

≤ 1

n |Y|

√
2n∆G

κ
· κnε

2 |Y|2
2∆G

= ε.

Thus, there exists a set, C, that ε-coversH1
SC, with size |C| ≤

⌈(
2d∆G

κnε2|Y|2

)d⌉
.
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Appendix D: Proofs from Chapter 6

This appendix contains the deferred proofs from Chapter 6.

D.1 Proof of Theorem 3

For i = 0, 1, 2, . . ., let βi , 2i+1. Since Equation 6.1 fails with probability δ + mν, one

could simply invoke Theorem 2 for each βi with δi , β−1
i (δ+mν). This approach would

introduce an additional O (ln(mν)−1) term in the numerator of Equation 6.22. I therefore

choose instead to cover β and u simultaneously. Accordingly, for j = 0, 1, 2, . . ., let

uij , 2j

√√√√8mn ln 2βi
δ

β2
i

∥∥Γπ
B

∥∥2

∞

.

Each βi defines a set of “bad” hypotheses, BiH, which we use in Equation 6.4 to define a

function φ̃i. Let δij , δβ−1
i 2−(j+1), and define an event

Eij , 1

{
E
h∼P

[
euij φ̃i(h,Ẑ)

]
≥ 1

δij
exp

(
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)}
.
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Note that none of the above depend on (β, η,Q). Using the event B defined in Equa-

tion 6.11, we have, via Proposition 1, that

Pr
Ẑ∼Dm

{Eij | ¬B} ≤ δij exp

(
−
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

E
Ẑ∼Dm

[
euij φ̃i(h,Ẑ) | ¬B

]
≤ δij.

Then, using the same reasoning as Equation 6.12, with E ,
⋃∞
i=0

⋃∞
j=0Eij ,

Pr
Ẑ∼Dm

{B ∪ E} ≤ mν +
∞∑
i=0

∞∑
j=0

Pr
Ẑ∼Dm

{Eij | ¬B}

≤ mν +
∞∑
i=0

∞∑
j=0

δij

= mν + δ
∞∑
i=0

β−1
i

∞∑
j=0

2−(j+1)

= mν + δ
∞∑
i=0

2−(i+1)

∞∑
j=0

2−(j+1)

= mν + δ.

Therefore, with probability at least 1 − δ − mν, every l ∈ [m] satisfies Z(l) /∈ BZ , and

every (i, j) satisfies

E
h∼P

[
euij φ̃i(h,Ẑ)

]
≤ 1

δij
exp

(
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)
. (D.1)

Observe that (β/n,BZ , η)-local stability implies (βj/n,BZ , η)-local stability for

all βj ≥ β. Therefore, for any particular (β, η,Q) such that Q is (β/n,BZ , η)-locally

stable, we select i? , b(ln 2)−1 ln βc. This ensures that β ≤ βi? , so Q also satisfies
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(βi?/n,BZ , η)-local stability. Then, letting

j? ,

⌊
1

2 ln 2
ln

(
DKL(Q‖P)

ln(2βi?/δ)
+ 1

)⌋
,

we have that

1

2

√√√√√8mn
(
DKL(Q‖P) + ln 2βi?

δ

)
β2
i?

∥∥Γπ
B

∥∥2

∞

≤ ui?j? ≤

√√√√√8mn
(
DKL(Q‖P) + ln 2βi?

δ

)
β2
i?

∥∥Γπ
B

∥∥2

∞

. (D.2)

Moreover,

DKL(Q‖P) + ln
1

δi?j?
≤ DKL(Q‖P) + ln

2βi?

δ
+

1

2
ln

(
DKL(Q‖P)

ln(2βi?/δ)
+ 1

)
≤ DKL(Q‖P) + ln

2βi?

δ
+

1

2

(
DKL(Q‖P) + ln

2βi?

δ

)
. (D.3)

Thus, with probability at least 1− δ −mν,

L(Q)− L̂(Q, Ẑ) ≤ α(η + ν) +
1

ui?j?

(
DKL(Q‖P) + ln E

h∼P

[
eui?j? φ̃i? (h,Ẑ)

])
≤ α(η + ν) +

1

ui?j?

(
DKL(Q‖P) + ln

1

δi?j?
+
u2
i?j?β

2
i?

∥∥Γπ
B

∥∥2

∞
8mn

)

≤ α(η + ν) +
3
(
DKL(Q‖P) + ln 2βi?

δ

)
2ui?j?

+
ui?j?β

2
i?

∥∥Γπ
B

∥∥2

∞
8mn

≤ α(η + ν) + 2βi?
∥∥Γπ
B

∥∥
∞

√
DKL(Q‖P) + ln 2βi?

δ

2mn
.

The first inequality uses Equation 6.8; the second uses Equation D.1; the third and fourth

use Equations D.2 and D.3. Noting that βi? ≤ 2β completes the proof.
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D.2 Proof of Proposition 5

Fix any h ∈ H and z /∈ BZ . By Definition 17, there exists a set BH(h) with measure

Qh(BH(h)) ≤ η. For any z /∈ BZ , let BH(h, z) , BH(h), and note that Qh(BH(h, z)) ≤ η

as well. Further, for any h′ /∈ BH(h, z), ‖h− h′‖ ≤ β. Thus, by Definition 16,

|L(h, z)− L(h′, z)| ≤ λ ‖h− h′‖ ≤ λβ,

which completes the proof.

D.3 Proof of Lemma 7

To simplify notation, let:

y1 , arg max
u∈Yn

DH(y,u) + h(x,u); y2 , arg max
u∈Yn

h(x,u);

y′1 , arg max
u∈Yn

DH(y′,u) + h(x′,u); y′2 , arg max
u∈Yn

h(x′,u).

Using this notation, we have that

n |Lr(h, z)− Lr(h, z
′)|

= |(DH(y,y1) + h(x,y1)− h(x,y2))− (DH(y′,y′1) + h(x′,y′1)− h(x′,y′2))|

≤ |(DH(y,y1) + h(x,y1))− (DH(y′,y′1) + h(x′,y′1))|+ |h(x,y2)− h(x′,y′2)| ,

(D.4)
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using the triangle inequality.

Focusing on the second absolute difference, we can assume, without loss of gener-

ality, that h(x,y2) ≥ h(x′,y′2), meaning

|h(x,y2)− h(x′,y′2)| = h(x,y2)− h(x′,y′2)

≤ h(x,y2)− h(x′,y2)

= w · (f(x,y2)− f(x′,y2))

≤ ‖w‖q ‖f(x,y2)− f(x′,y2)‖p

≤ ‖w‖q (∆G + 2)RDH(x,x′). (D.5)

The first inequality uses the optimality of y′2, implying −h(x′,y′2) ≤ −h(x′,y2); the

second inequality uses Hölder’s inequality; the third inequality uses Lemma 13 (Equa-

tion A.1). Note that we obtain the same upper bound if we assume that h(x,y2) ≤

h(x′,y′2), since we can reverse the terms inside the absolute value and proceed with y′2

instead of y2.

We now return to the first absolute difference. To reduce clutter, it will help to use

the loss-augmented potentials, θ̃(x,y; w), from Equation 6.30. Recall that δ(y) denotes

the loss augmentation vector for y. We then have that

|(DH(y,y1) + h(x,y1))− (DH(y′,y′1) + h(x′,y′1))| =
∣∣∣θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1

∣∣∣ .
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If we assume (without loss of generality) that θ̃(x,y; w) · ŷ1 ≥ θ̃(x′,y′; w) · ŷ′1, then

∣∣∣θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1
∣∣∣ = θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1

≤ θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ1

= (θ(x; w) + δ(y)− θ(x′; w)− δ(y′)) · ŷ1

= w · (f(x,y1)− f(x′,y1)) + (δ(y)− δ(y′)) · ŷ1

≤ ‖w‖q (∆G + 2)RDH(x,x′) + (δ(y)− δ(y′)) · ŷ1

≤ ‖w‖q (∆G + 2)RDH(x,x′) +DH(y,y′). (D.6)

The first inequality uses the optimality of y′1; the second inequality uses Hölder’s inequal-

ity and Lemma 13 again; the last inequality uses the fact that

(δ(y)− δ(y′)) · ŷ1 = DH(y,y1)−DH(y′, ŷ1) ≤ DH(y,y′).

The upper bound in Equation D.6 also holds when θ̃(x′,y′; w) · ŷ′1 ≥ θ̃(x,y; w) · ŷ1.

Combining Equations D.5 to D.7, we then have that

n |Lr(h, z)− Lr(h, z
′)| ≤ 2(∆G + 2)R ‖w‖q DH(x,x′) +DH(y,y′)

≤ 2(∆G + 2)R ‖w‖q DH(z, z′) +DH(z, z′).

Dividing both sides by n yields Equation 6.32. To obtain Equation 6.33, we use Lemma 13’s

Equation A.2 in Equations D.5 and D.6, which reduces the term (∆G + 2) to just 2.
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D.4 Proof of Lemma 8

The proof proceeds similarly to that of Lemma 7. Let

y1 , arg max
u∈Yn

DH(y,u) + h(x,u); y2 , arg max
u∈Yn

h(x,u);

y′1 , arg max
u∈Yn

DH(y,u) + h′(x,u); y′2 , arg max
u∈Yn

h′(x,u).

Using this notation, we have that

n |Lr(h, z)− Lr(h
′, z)|

≤ |(DH(y,y1) + h(x,y1))− (DH(y,y′1) + h′(x,y′1))|+ |h(x,y2)− h′(x,y′2)| ,

(D.7)

via the triangle inequality. Assuming h(x,y2) ≥ h′(x,y′2), we have that

|h(x,y2)− h′(x,y′2)| = h(x,y2)− h′(x,y′2)

≤ h(x,y2)− h′(x,y2)

= (w −w′) · f(x,y2)

≤ ‖w −w′‖q ‖f(x,y2)‖p

≤ ‖w −w′‖q |G|R, (D.8)
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via Lemma 14. Further, using the loss-augmented potentials, and assuming θ̃(x,y; w) ·

ŷ1 ≥ θ̃(x,y; w′) · ŷ′1, we have that

|(DH(y,y1) + h(x,y1))− (DH(y,y′1) + h′(x,y′1))| = θ̃(x,y; w) · ŷ1 − θ̃(x,y; w′) · ŷ′1

≤ θ̃(x,y; w) · ŷ1 − θ̃(x,y; w′) · ŷ1

= (θ(x; w) + δ(y)− θ(x; w′)− δ(y)) · ŷ1

= (w −w′) · f(x,y1)

≤ ‖w −w′‖q ‖f(x,y1)‖p

≤ ‖w −w′‖q |G|R. (D.9)

Combining the inequalities and dividing by n completes the proof.

D.5 Proof of Example 2

Since the weights are uniformly bounded, define the prior, P, as a uniform distribution

on the d-dimensional unit ball. Given a (learned) hypothesis, h, with weights w, we

construct a posterior, Qh, as a uniform distribution on a d-dimensional ball with radius ε,

centered at w, and clipped at the boundary of the unit ball; i.e., its support is {w′ ∈ Rd :

‖w′ −w‖2 ≤ ε, ‖w′‖2 ≤ 1}. Let ε , (m |G|)−1, meaning the radius of the ball should

decrease as the size of the training set increases.

For a uniform distribution, U, with support supp(U) ⊆ H, denote its volume by

vol(U) ,
∫
H
1{h ∈ supp(U)} dh.
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The probability density function of U is the inverse of its volume. The volume of P is the

volume of a unit ball, which is proportional to 1. Similarly, the volume of Qh is at least

the volume of a d-dimensional ball with radius ε/2 (due to the intersection with the unit

ball), which is proportional to (ε/2)d.1 Therefore, using p and qh to denote their respective

densities, we have that

DKL(Qh‖P) =

∫
H
qh(h

′) ln
qh(h

′)

p(h′)
dh′

=

∫
H
qh(h

′) ln
vol(P)

vol(Qh)
dh′

≤
∫
H
qh(h

′) ln(2/ε)d dh′

= d ln(2m |G|).

By assumption, every allowable hypothesis has a weight vector w with ‖w‖2 ≤ 1.

We also assume that supx∈X ‖x‖2 ≤ 1. Therefore, with R = 1 and β , (2∆G + 4) + 1,

Lemma 7 immediately proves that Lr ◦ {h ∈ HM3N : ‖w‖2 ≤ 1} is (β/n)-uniformly

stable. Invoking Corollary 2, we then have that, with probability at least 1 − δ, every

Qh : ‖w‖2 ≤ 1 satisfies

Lr(Qh) ≤ L̂r(Qh, Ẑ) + 2 ((2∆G + 4) + 1) ‖Γπ‖∞

√
d ln(2m |G|) + ln 2

δ

2mn
. (D.10)

By construction, every h′ ∼ Qh satisfies ‖w′ −w‖2 ≤ (m |G|)−1, so Q has

(1/(m |G|), 0)-local hypothesis stability. As demonstrated in Equation 6.36, Lr has (2 |G| /n, ∅)-

1The precise definitions are withheld for simplicity of exposition. It will suffice to recognize their
relative proportions, since the withheld constant depends only on d, and is thereby canceled out in the KL
divergence.
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local hypothesis stability. Thus, via Proposition 5, (Lr,Q) has (2/(mn), ∅, 0)-local sta-

bility. Then, via Proposition 4 and Equation 6.31, we have that

LH(h) ≤ Lr(h) ≤ Lr(Qh) +
2

mn
, (D.11)

and

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
2

mn
≤ L̂h(h, Ẑ) +

2

mn
. (D.12)

Combining Equations D.10 to D.12 completes the proof.

D.6 Proof of Lemma 9

I begin with a fundamental property of the normal distribution, which is used to prove the

concentration inequality.

Fact 3. If X is a Gaussian random variable, with mean µ and variance σ2, then, for any

ε > 0,

Pr {|X − µ| ≥ ε} ≤ 2 exp

(
− ε2

2σ2

)
. (D.13)

Observe that, if ‖X− µ‖p ≥ ε, then there must exist at least one coordinate i ∈ [d]

such that |Xi − µi| ≥ ε/d1/p; otherwise, we would have

‖X− µ‖p =

(
d∑
i=1

|Xi − µi|p
)1/p

<
(
d
( ε

d1/p

)p)1/p

= ε.
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We therefore have that

Pr
{
‖X− µ‖p ≥ ε

}
≤ Pr

{
∃i : |Xi − µi| ≥

ε

d1/p

}
≤

d∑
i=1

Pr
{
|Xi − µi| ≥

ε

d1/p

}
≤

d∑
i=1

2 exp

(
− ε2

2σ2d2/p

)
.

The second inequality uses the union bound; the last uses Fact 3. Summing over i =

1, . . . , d completes the proof.

D.7 Proof of Example 5

I first show that D(BZ) ≤ 1/n. Then, the rest of the proof is a simple modification of the

previous analyses.

Observe that, for any x and µy,

‖x‖2 − 1 ≤ ‖x‖2 − ‖µy‖2 ≤ ‖x− µy‖2 .

So, if ‖x‖2 ≥ 2, then ‖x− µy‖2 ≥ 1. Therefore, using the union bound, and Lemma 9,

146



we can upper-bound the measure of BZ as follows:

D(BZ) = Pr
Z∼D
{∃i : ‖Xi‖2 ≥ 2}

≤ sup
y∈Yn

Pr
X∼D
{∃i : ‖Xi‖2 ≥ 2 |Y = y}

= sup
y∈Yn

n∑
i=1

Pr
Xi∼D

{‖Xi‖2 ≥ 2 |Yi = yi}

≤ sup
y∈Yn

n∑
i=1

Pr
Xi∼D

{
‖Xi − µyi‖2 ≥ 1 |Yi = yi

}
≤ sup

y∈Yn

n∑
i=1

2k exp

(
− 1

2kσ2
yi

)

≤
n∑
i=1

2k exp

(
−2k ln(2kn2)

2k

)
=

1

n
.

Conditioned on B, we have that Lemmas 13 and 14 hold for R = 2; hence, so

do Lemmas 7 and 8. With P, Qh and BHM3N
(h) constructed identically to Example 3,

this means that Qh is (βh/n,BZ , 1/(mn))-locally stable. Further, Lr has (4 |G| /n,BZ)-

local hypothesis stability, and Q has (1/(m |G|), 1/(mn))-local hypothesis stability; by

Proposition 5, this means that (Lr,Q) has (4/(mn),BZ , 1/(mn))-local stability. Thus,

invoking Theorem 3 and Proposition 4, with ν = 1/n, we have that, with probability at

least 1− δ −m/n, all l ∈ [m] satisfy Z(l) /∈ BZ , and all h ∈ HM3N satisfy

LH(h) ≤ Lr(Qh) +
5

mn
+

1

n

≤ L̂r(Qh, Ẑ) +
6

mn
+

2

n

+ 4βh
∥∥Γπ
B

∥∥
∞

√
1
2
‖w‖2

2 + d
2

ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
.
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Further, since none of the training examples in the sample are “bad,” we also have that

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
5

mn
≤ L̂h(h, Ẑ) +

5

mn
.

Combining these inequalities completes the proof.
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Appendix E: Proofs from Chapter 7

E.1 Properties of Strong Convexity

Strong convexity can be characterized in a number of ways. The following facts provide

some conditions that are equivalent to Definition 1.

Fact 4. A differentiable function, ϕ : S → R, of a convex set, S , is κ-strongly convex

w.r.t. a norm, ‖ · ‖, if and only if, for all s, s′ ∈ S,

κ ‖s− s′‖2 ≤ 〈∇ϕ(s)−∇ϕ(s′), s− s′〉 .

Fact 5. A twice-differentiable function, ϕ : S → R, of a convex set, S, is κ-strongly

convex w.r.t. a norm, ‖ · ‖, if and only if, for all s, s′ ∈ S,

κ ‖s‖2 ≤
〈
s,∇2ϕ(s′) s

〉
.

For the 2-norm, Fact 5 means that the minimum eigenvalue of the Hessian is lower-

bounded by κ.
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E.2 Proofs from Section 7.1

This section contains all deferred proofs from Section 7.1.

E.2.1 Proof of Stability Lemma (Lemma 11)

Recall that µ̃(θ) and µ̃(θ′) are the gradients of Φ̃(θ) and Φ̃(θ′), respectively. Since

the conjugate function, Φ̃∗, is assumed to be κ-strongly convex, we have via Lemma 10

and Definition 18 that

‖µ̃(θ)− µ̃(θ′)‖2 =
∥∥∥∇Φ̃(θ)−∇Φ̃(θ′)

∥∥∥
2
≤ 1

κ
‖θ − θ′‖2 . (E.1)

Dividing both sides by
√
|G| completes the proof.

E.2.2 The Expected NLL Minimizer Produces the True Marginals

Observe that θ̂m effectively fits the empirical marginals of the dataset, 1
m

∑m
j=1 ŷ(j). Thus,

as m → ∞, the marginals induced by θ̂m and θ? converge. This is formalized in the

following lemma.

Lemma 18. Let µ(θ?) denote the true marginals of a distribution. Let θ̄ denote the

minimizer of the expected NLL, per Equation 7.4. Then,

µ(θ?) = µ̃(θ̄).
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Proof Expanding the expected NLL, we have

E [− ln p̃(Y;θ)] = Φ̃(θ)− E[θ · Ŷ].

The gradient of this is

∇E [− ln p̃(Y;θ)] = µ̃(θ)− E[Ŷ] = µ̃(θ)− µ(θ?).

Since the NLL is differentiable, the gradient at the minimum is zero. Thus, when∇E
[
− ln p̃(Y; θ̄)

]
=

0, we have µ̃(θ̄) = µ(θ?).

E.2.3 Proof of Marginals Error Bound (Proposition 6)

By Lemma 18, µ(θ?) = µ̃(θ̄). Further, because Φ̃∗ is assumed to be κ-strongly convex,

using Lemma 11, we have that

1√
|G|

∥∥∥µ̃(θ̂m)− µ(θ?)
∥∥∥

2
=

1√
|G|

∥∥∥µ̃(θ̂m)− µ̃(θ̄)
∥∥∥

2

≤ 1

κ
√
|G|

∥∥∥θ̂m − θ̄
∥∥∥

2
. (E.2)

The rest of the proof involves upper-bounding
∥∥∥θ̂m − θ̄

∥∥∥
2
.

Assumption 1 states that, with probability at least 1 − δ, there exists a convex set,

S, encompassing θ̄ and θ̂m, such that the minimum eigenvalue of ∇2L( · ;θ) : θ ∈ S is

lower-bounded by γ(δ,m,G). By Fact 5, this event implies that the NLL is γ(δ,m,G)-
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strongly convex in S. Since ∇2L( · ;θ) = ∇2Lm(θ), the same can be said for Lm, so the

regularized NLL,

LR
m(θ) , Lm(θ) + Λm ‖θ‖2

2 ,

is also γ(δ,m,G)-strongly convex in S. Therefore, with probability at least 1 − δ over

draws of m examples,

∥∥∥θ̄ − θ̂m

∥∥∥2

2
≤ 1

γ(δ,m,G)

〈
∇LR

m(θ̄)−∇LR
m(θ̂m), θ̄ − θ̂m

〉
=

1

γ(δ,m,G)

〈
∇LR

m(θ̄), θ̄ − θ̂m

〉
≤ 1

γ(δ,m,G)

∥∥∇LR
m(θ̄)

∥∥
2

∥∥∥θ̄ − θ̂m

∥∥∥
2
.

The second line follows from the fact that θ̂m is the minimizer of LR
m, which is differ-

entiable, so ∇LR
m(θ̂m) = 0. The last line uses Cauchy-Schwarz. Dividing both sides

by
∥∥∥θ̄ − θ̂m

∥∥∥
2
, and combining with Equation E.2, we have that, with probability at least

1− δ,
1√
|G|

∥∥∥µ̃(θ̂m)− µ(θ?)
∥∥∥

2
≤

∥∥∇LR
m(θ̄)

∥∥
2

κ γ(δ,m,G)
√
|G|

. (E.3)

Using the triangle inequality, the norm of the gradient decomposes as

∥∥∇LR
m(θ̄)

∥∥
2

=
∥∥∇Lm(θ̄) + 2Λmθ̄

∥∥
2

≤
∥∥∇Lm(θ̄)

∥∥
2

+ 2Λm

∥∥θ̄∥∥
2
. (E.4)

Let N =
∣∣θ̄∣∣, and note that N = |Y| |V| + |Y|2 |E| ≤ |Y|2 |G|. Therefore, using the
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definition of Λm, and leveraging the assumption that
∥∥θ̄∥∥∞ ≤ 1, we have that

2Λm

∥∥θ̄∥∥
2
≤ 2

√
N

m

∥∥θ̄∥∥∞ ≤ 2 |Y|
√
|G|
m
. (E.5)

Turning now to the gradient of Lm, we can expand Equation 7.3 as

Lm(θ) =
1

m

m∑
j=1

Φ̃(θ)− θ · ŷ(j).

Since µ̃(θ̄) is the gradient of Φ̃(θ), and is in fact equal to the true marginals, µ(θ?), we

have that the gradient of Lm is

∇Lm(θ̄) =
1

m

m∑
j=1

µ̃(θ̄)− ŷ(j) = µ(θ?)− 1

m

m∑
j=1

ŷ(j).

Note that the gradient is a zero-mean random vector; random because it depends on the

draw of the training set. We will bound this quantity with high probability, using a tech-

nique borrowed from London et al. (2014).

It helps to denote the gradient by a vector, ∇Lm(θ̄) , g ∈ RN . Fix some value

ε > 0. For g to be greater than ε, at least one of its coordinates must have magnitude at

least ε/
√
N ; otherwise, we would have

‖g‖2 =

√√√√ N∑
i=1

|gi|2 <

√√√√ N∑
i=1

ε2

N
= ε.

153



Thus, using the union bound, we have that

Pr {‖g‖2 ≥ ε} ≤ Pr

{
∃ i : |gi| ≥

ε√
N

}
≤

N∑
i=1

Pr

{
|gi| ≥

ε√
N

}
.

Each gi is the difference of the mean and sample average of a sufficient statistic for some

node variable Yv (or edge variable Ye) having label yv (or ye). The sufficient statistics are

bounded in the interval [0, 1], so |gi| ≤ 1. Moreover, the sample average is taken from

m i.i.d. draws from the target distribution. Therefore, applying Hoeffding’s inequality to

each i, we have that

Pr

{
|gi| ≥

ε√
N

}
≤ 2 exp

(−2mε2

N

)
.

Summing over i = 1, . . . , N , we have

Pr {‖g‖2 ≥ ε} ≤ 2N exp

(−2mε2

N

)
.

Thus, with probability at least 1− δ,

∥∥∇Lm(θ̄)
∥∥

2
≤

√
N ln 2N

δ

2m
≤ |Y|

√
|G| ln 2|Y|2|G|

δ

2m
. (E.6)

The last inequality uses the fact that N ≤ |Y|2 |G|.

Substituting Equations E.5 and E.6 into Equation E.4, and rearranging the terms,
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we have that with probability at least 1− δ,

∥∥∇LR
m(θ̄)

∥∥
2
≤ |Y|

√
|G|
m

√1

2
ln

2 |Y|2 |G|
δ

+ 2

 .

Then, combining the above with Equation E.3, we have that with probability at least 1−2δ

over draws of the training set,

1√
|G|

∥∥∥µ̃(θ̂m)− µ(θ?)
∥∥∥

2
≤ |Y|
κ γ(δ,m,G)

√
m

√1

2
ln

2 |Y|2 |G|
δ

+ 2

 ,

which completes the proof.

E.3 Tree-Structured Models

In this section, I analyze tree-structured models. I show that the negative entropy of a

tree-structured model is strongly convex, with a modulus that depends on the contraction

coefficients induced by the model. This result is used in the proof of Proposition 7. I

also show how the contraction coefficients of a tree-structured model can be measured

efficiently.

E.3.1 Strong Convexity of the Tree Negative Entropy

When the model is structured according to a tree, T , the marginal polytope,M, is exactly

equivalent to the local marginal polytope, M̃. Further, its entropy function, HT , can be

expressed succinctly as a function of the marginals, using the Bethe entropy formula (see

Equation 7.7). Wainwright (2006) showed that−HT is Ω(1/ |G|)-strongly convex. This is
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a pessimistic lower bound, since it considers all models in the exponential family. Indeed,

one can show that tree-structured models with good contraction (see Definition 19) and

bounded degree induce a negative entropy that is Ω(1)-strongly convex.

Proposition 9. Fix a tree, T , with maximum degree ∆T = O(1), independent of |V|. Let

Θ ⊆ R|θ| denote the set of potentials with maximum contraction coefficient ϑ?θ ≤ 1/∆T ,

and letM(Θ) , {µ(θ) : θ ∈ Θ} denote the corresponding set of realizable marginals.

Then, the negative entropy, −HT , is Ω(1)-strongly convex inM(Θ).

Proof The Hessian of the log-partition, Φ(θ), is the covariance matrix,

Σ(Y;θ) , E
[
ŷŷ>;θ

]
− E [ŷ;θ]E

[
ŷ>;θ

]
,

where E[ · ;θ] denotes an expectation over the distribution parameterized by θ. (For a

derivation of this fact, see Wainwright and Jordan (2008).) Let Σ−1(Y;θ) denote the

inverse covariance (i.e., precision) matrix. Since Φ is the convex conjugate of the negative

entropy, −H , the Hessian of one is the inverse Hessian of the other. This insight yields

the following lemma.

Lemma 19. The negative entropy, −H , is (1/λmax)-strongly convex in M(Θ), where

λmax , maxθ∈Θ ‖Σ(Y;θ)‖2 is the maximum eigenvalue of the covariance matrix, over

all potentials in Θ.

Proof Via Fact 5,−H is κ-strongly convex inM(Θ) if the eigenvalues of∇2 (−H(µ(θ))),

for every µ(θ) ∈ M(Θ) (i.e., every θ ∈ Θ), are bounded away from zero by κ. Via con-
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vex conjugacy,

∇2 (−H(µ(θ))) =
(
∇2Φ(θ)

)−1
= Σ−1(Y;θ).

Therefore, the minimum eigenvalue of −H(µ(θ)) is equal to the maximum eigenvalue

of Σ(Y;θ).

Thus, to lower-bound the convexity of−H , it suffices to uniformly upper-bound the

spectral norm of Σ(Y;θ), over all θ ∈ Θ. A simple way to do this (used by Wainwright,

2006) is to analyze the trace norm (i.e., sum of the diagonal), which upper-bounds the

spectral norm. The diagonal elements of the covariance matrix are uniformly upper-

bounded by 1/4, since the sufficient statistics are bounded in [0, 1]. This yields an upper

bound of O(|G|). This bound is too loose, since it grows with the size of the graph.

A better approach is to analyze the induced 1-norm (i.e., maximum column sum)

or∞-norm (i.e., maximum row sum), which, for symmetric matrices, are equivalent, and

conveniently upper-bound the spectral norm. (This is because ‖A‖2 ≤
√
‖A‖1 ‖A‖∞ =√

‖A‖1 ‖A‖1 = ‖A‖1.) Intuitively, the 1-norm of the covariance matrix captures the

maximum dependence as a function of graph distance. To bound the 1-norm, we will

relate each covariance coefficient to a product of contraction coefficients. For contraction

less than 1—i.e., without determinism—this product will decrease geometrically with

graph distance. This geometric series converges, provided the structure has bounded de-

gree and sufficiently small contraction.

The proof uses a technical lemma that is often credited to Dobrushin. I use a version

of this given by Kontorovich (2012).
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Lemma 20 (Kontorovich, 2012, Lemma 2.1). Let ν : Ω → R be a signed, balanced

measure, such that
∑

ω∈Ω ν(ω) = 0. Let K : Ω × Ω → R be a Markov kernel, where

K(ω |ω′) ≥ 0,
∑

ωK(ω |ω′) = 1, and

(Kν)(ω) ,
∑
ω′∈Ω

K(ω |ω′) ν(ω′).

Then

‖Kν‖TV =
∑
ω

∣∣∣∣∣∑
ω′

K(ω |ω′) ν(ω′)

∣∣∣∣∣ ≤ ϑ
∑
ω′

|ν(ω′)| = ϑ ‖ν‖TV ,

where

ϑ , sup
ω,ω′∈Ω

‖K(· |ω)−K(· |ω′)‖TV .

is the contraction coefficient of K.

Fix any θ ∈ Θ. For the following, I use the shorthand pθ(y) to denote p(Y = y;θ),

and similar probabilities. I also let σθ(yu, yv) denote the entry of the covariance matrix

corresponding to Yu = yu and Yv = yv.

Let π(1), . . . , π(l) denote the sequence of nodes along a path. Note that π is the

unique path connecting its end points, since the model is tree-structured. The covariance
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entries corresponding to Yπ(1) = yπ(1) and Yπ(l) = yπ(l) can be written recursively as

σθ(yπ(1), yπ(l)) = pθ(yπ(1), yπ(l))− pθ(yπ(1))pθ(yπ(l))

=
∑
yπ(l−1)

pθ(yπ(1), yπ(l−1), yπ(l))− pθ(yπ(1))pθ(yπ(l−1), yπ(l))

=
∑
yπ(l−1)

pθ(yπ(1), yπ(l−1))pθ(yπ(l) | yπ(l−1))

− pθ(yπ(1))pθ(yπ(l−1))pθ(yπ(l) | yπ(l−1))

=
∑
yπ(l−1)

pθ(yπ(l) | yπ(l−1))
(
pθ(yπ(1), yπ(l−1))− pθ(yπ(1))pθ(yπ(l−1))

)
=
∑
yπ(l−1)

pθ(yπ(l) | yπ(l−1))σθ(yπ(1), yπ(l−1)).

Note that the second equality follows from the Markov property; since Yπ(l) is condition-

ally independent of Yπ(1) given Yπ(l−1), we have that pθ(yπ(l) | yπ(l−1), yπ(l)) = pθ(yπ(l) | yπ(l−1)).

In the righthand expression, the conditional probability under pθ defines a Markov

kernel. Moreover, the covariance with yπ(1) defines a signed measure,

ν(Y ; yπ(1)) , σθ(yπ(1), Y ),

which is balanced, since

∑
y

ν(y; yπ(1)) =
∑
y

σθ(yπ(1), y)

=
∑
y

pθ(yπ(1), y)− pθ(yπ(1))pθ(y)

= pθ(yπ(1))− pθ(yπ(1)) = 0.
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Therefore, via Lemma 20, we have that

∑
yπ(l)

∣∣σθ(yπ(1), yπ(l))
∣∣ =

∑
yπ(l)

∣∣∣∣∣∣
∑
yπ(l−1)

pθ(yπ(l) | yπ(l−1))σθ(yπ(1), yπ(l−1))

∣∣∣∣∣∣
≤ ϑ?θ

∑
yπ(l−1)

∣∣σθ(yπ(1), yπ(l−1))
∣∣

Applying this identity recursively, we have that

∑
yπ(l)

∣∣σθ(yπ(1), yπ(l))
∣∣ ≤ ϑ?θ

∑
yπ(l−1)

∣∣σθ(yπ(1), yπ(l−1))
∣∣

...

≤ (ϑ?θ)l−2
∑
yπ(2)

∣∣σθ(yπ(1), yπ(2))
∣∣

≤ (ϑ?θ)l−1
∑
y′
π(1)

∣∣σθ(yπ(1), y
′
π(1))

∣∣
≤ |Y|

4
(ϑ?θ)l−1.

The last inequality follows from the fact that the covariance of any variable assignment is

at most 1/4 in magnitude, and the covariance between any two assignments to the same

variable is also at most 1/4.

Given an upper bound on the covariances of node assignments, one can bound the

covariance of edge assignments. Consider edges {a, b}, {c, d} ∈ E . Due to the tree struc-

ture, the edges lie at opposite ends of a unique path connecting their constituent nodes.

Without loss of generality, assume that this path has the order a, b, . . . , c, d, and that the

length of the path from b to c is l. By the Markov property, Ya and Yd are condition-
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ally independent given Yb and Yc. Thus, for any configuration (Ya, Yb) = (ya, yb) and

(Yc, Yd) = (yc, yd), we have that

∑
yc,yd

|σθ((ya, yb), (yc, yd))| =
∑
yc,yd

|pθ(ya, yb, yc, yd)− pθ(ya, yb)pθ(yc, yd)|

=
∑
yc,yd

∣∣pθ(ya, yd | yb, yc)pθ(yb, yc)

− pθ(ya | yb)pθ(yb)pθ(yd | yc)pθ(yc)
∣∣

=
∑
yc,yd

∣∣pθ(ya | yb)pθ(yd | yc)pθ(yb, yc)

− pθ(ya | yb)pθ(yd | yc)pθ(yb)pθ(yc)
∣∣

=
∑
yc,yd

pθ(ya | yb)pθ(yd | yc) |σθ(yb, yc)|

= pθ(ya | yb)
∑
yc

|σθ(yb, yc)|
∑
yd

pθ(yd | yc)

= pθ(ya | yb)
∑
yc

|σθ(yb, yc)|

≤ |Y|
4

(ϑ?θ)l−1.

The same argument can be used to bound the covariance between node and edge variables,

where the relevant path length l becomes the length from the node to the closest endpoint

of the edge. The base case of covariance between a node or edge state indicator and

another state is also at most 1/4.

Thus far, I have derived upper bounds on the entries of the covariance matrix, which

correspond to covariances between three types of pairs: node variables and node vari-

ables; node variables and edge variables; and edge variables and edge variables. For a
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distribution induced by a tree-structured model, with maximum degree ∆T , the 1-norm

of a column corresponding to a node assignment Yu = yu is

σθ(Yu = yu) =
∑
y′u

|σθ(yu, y
′
u)|+

∑
v∈V\u

∑
yv

|σθ(yu, yv)|

+
∑
{v,v′}∈E

∑
yv ,yv′

|σθ(yu, (yv, yv′))|

≤ |Y|
4

+
|Y|
4

∑
v∈V\u

(ϑ?θ)l(u,v)−1

+
|Y|
4

∑
{v,v′}∈E

(ϑ?θ)max{0,min{l(u,v),l(u,v′)}−1}

≤ |Y|
4

+
|Y|
4

∞∑
d=1

∆d
T (ϑ?θ)d−1

+
|Y|∆T

4
+
|Y|
4

∞∑
d=1

∆d+1
T (ϑ?θ)d−1

=
|Y|
4

+
|Y|∆T

4

∞∑
d=1

(∆T ϑ
?
θ)d−1

+
|Y|∆T

4
+
|Y|∆2

T

4

∞∑
d=1

(∆T ϑ
?
θ)d−1

=
|Y|
4

+
|Y|∆T

4(1−∆T ϑ?θ)
+
|Y|∆T

4
+

|Y|∆2
T

4(1−∆T ϑ?θ)
.

where l(u, v) is the length of the path from node u to v. The second inequality holds

because the number of nodes at distance d is at most ∆d
T , and the maximum number

of edges with endpoints at distance d is at most ∆d+1
T , where we adjust for node and

edge variables at distance zero. The last line applies the geometric series identity, since

∆T ϑ
?
θ < ∆T/∆T = 1. An analogous argument bounds the 1-norm of any column

corresponding to an edge assignment.
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Since the 1-norm of every column of the covariance matrix is upper-bounded inde-

pendently of |G|, it follows that the induced 1-norm of Σ(Y;θ) is bounded independently

of |G|; that is, ‖Σ(Y;θ)‖1 = O(1). This holds for every θ ∈ Θ, though the constant may

differ, depending on ϑ?θ. Recall that the 1-norm of the covariance matrix upper-bounds the

spectral norm, since the covariance matrix is symmetric. Thus, the minimum eigenvalue

of ∇2 (−H(µ(θ))), for every µ(θ) ∈ M(Θ), is lower-bounded by a constant, which

means that the negative entropy is Ω(1)-strongly convex inM(Θ).

E.3.2 Measuring Contraction

In the previous section, I relate the convexity of −HT to the model’s maximum contrac-

tion coefficient. For general graphical models, measuring the contraction coefficients may

be intractable. However, when the model is tree-structured, there is an efficient algorithm.

For a tree-structured model, exact inference can be computed efficiently using mes-

sage passing. Given the node and edge marginals, one can compute the conditional prob-

abilities via

p (Yu = yu |Yv = yv ;θ) =
p (Yu = yu, Yv = yv ;θ)

p (Yv = yv ;θ)
.

One can then compute the total variation distance; hence, the contraction coefficient.

For variables with small domains (e.g., binary), this is efficient. Given the contraction

coefficient for each (u, v) : {u, v} ∈ E , computing the maximum contraction coefficient

is trivial.

Note that marginal inference only needs to be computed once in this procedure. The
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time complexity of inference in a tree-structured model, with |Y| labels and |E| edges is

O(|Y|2 |E|). For each undirected edge, there are two contraction coefficients (one per

direction), each of which involves |Y|2 operations (|Y| additions to compute the total

variation distance conditioned on Yv; and |Y| values of Yv to condition on to compute

the supremum). Since there are |E| edges, the overall time complexity of computing the

contraction coefficients is O(|Y|2 |E|).

E.4 Tree-Reweighting

In this section, we prove Proposition 7, which gives a model-dependent lower bound on

the modulus of convexity for the tree-reweighted negative entropy. We also explore the

ramifications of Proposition 7 for a grid-structured model.

E.4.1 Proof of −HTR Strong Convexity (Proposition 7)

The following lemma relates the convexity of −HTR to the convexity of its constituent

tree entropies, as well as the tree distribution.

Lemma 21. (Wainwright, 2006, Appendix C) Fix a graph,G , (V , E), and a distribution,

ρ, over the spanning trees, T (G), such that ρ(e) > 0 for all e ∈ E . Let ρ?e , mine∈E ρ(e)

denote the minimum edge probability. Let κ?T denote the minimum convexity of −HT for

any tree T ∈ T (G) with positive probability under ρ. Then the tree-reweighted negative

entropy, −HTR, is (ρ?eκ
?
T )-strongly convex.

Thus, to prove Ω(1)-strong convexity, one must show that the minimum edge prob-

ability, ρ?e, and the minimum tree convexity, κ?T are both lower-bounded by values that are
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independent of |G|.

In Proposition 7, it is assume that ρ?e is lower-bounded by a positive constant,C > 0.

Since HTR can be defined using any distribution over spanning trees, it is usually possible

to construct an edge distribution for which this holds. (An example for a grid is given

in Section E.4.2.) Therefore, the real challenge is to show that κ?T = Ω(1). For each

T ∈ T (G), denote the set of admissible potentials by ΘT ⊆ R|θ|, where dimensions

corresponding to edges that don’t exist in T have unbounded range. Note that

Θ =
⋂

T∈T (G):ρ(T )>0

ΘT ,

so

M̃(Θ) =
⋂

T∈T (G):ρ(T )>0

M̃(ΘT ).

Let M̃T (Θ) denote the projection of M̃(Θ) onto the subspace defined by the nodes and

edges in T , and note that M̃T (Θ) ⊆ M̃T (ΘT ). Proposition 9 showed that, under suitable

structural and contraction conditions, −HT is Ω(1)-strongly convex in M̃T (ΘT ); hence,

in M̃T (Θ) as well. When combined with Lemma 21, with ρ?e > C, this proves that−HTR

is Ω(1)-strongly convex in M̃(Θ).

E.4.2 Example Tree-Reweighting for a Grid Graph

Suppose the model is structured according to an m × n grid. This graph can be covered

using a set of 4 chains, using the “snake-like” pattern illustrated in Figure E.1. Observe

that each internal edge is covered by 2 chains, and each boundary edge is covered by

165



Figure E.1: Covering the edges of a grid graph with 4 chains.

3 chains. Therefore, using a uniform distribution over the chains, we have that each

internal edge, e, has probability ρ(e) = 1/2, and each boundary edge, e′, has probability

ρ(e′) = 3/4.

To apply Proposition 7 to this spanning tree distribution, take C = 1/2 as the mini-

mum edge probability. The maximum degree of a chain is 2, so the maximum contraction

coefficient, ϑ?θ,T , must be at most 1/2. It may be possible to upper-bound ϑ?θ,T analytically

for all θ in some space. Alternately, one could map out the space of feasible potentials by

measuring ϑ?θ,T , using the procedure from Section E.3.2.

E.5 Proof of −HC Strong Convexity (Proposition 8)

In this section, I prove Proposition 8, which characterizes the modulus of convexity for

counting number entropies. The proof of Proposition 8 requires two technical lemmas.

Lemma 22 (Shalev-Schwartz, 2007, Lemma 16). The function ϕ(z) ,
∑d

i zi log zi is

1-strongly convex in the probability simplex, {z ∈ [0, 1]d : ‖z‖1 = 1}, w.r.t. the 1-norm.
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Lemma 23 (Heskes, 2006, Lemma A.1). The difference of entropies, equivalent to the

negative conditional entropy, Hv(µ̃v) − He(µ̃e) = −He|v(µ̃e), for v ∈ e, is a convex

function of µ̃e.

Every edge, e, is composed of exactly two nodes, {u, v}. By assumption, αe ≥

κ > 0. Therefore, one can shift (2κ/3) weight from αe to αu and αv without affecting the

counting numbers or Heskes’s convexity conditions. Let:

∀e ∈ E , α̃e , αe −
2κ

3
;

∀(v, e) : v ∈ e, α̃v,e , αv,e +
κ

3
;

∀v ∈ V , α̃v , αv +
∑
e:v∈e

κ

3
.

Observe that the new auxiliary counts satisfy Equations 7.10 and 7.11:

∀v ∈ V , cv = αv −
∑
e:v∈e

(
αv,e +

κ

3
− κ

3

)
= α̃v −

∑
e:v∈e

α̃v,e ; (E.7)

∀e ∈ E , ce = αe +
∑
v:v∈e

(
αv,e +

κ

3
− κ

3

)
= α̃e +

∑
v:v∈e

α̃v,e. (E.8)

Now, every e has α̃e ≥ κ/3. Further, because it is assumed that every node is involved

in at least one edge, every v has α̃v ≥ κ/3. (One could extend Proposition 8 to arbitrary

graphs by assuming that every isolated node has cv ≥ κ/3.)

Substituting Equations E.7 and E.8 into Equation 7.9 and rearranging the terms, we
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obtain

−HC(µ̃) = −
∑
v∈V

α̃vHv(µ̃v)−
∑
e∈E

α̃eHe(µ̃e) +
∑
e∈E

∑
v:v∈e

α̃v,e(Hv(µ̃v)−He(µ̃e))

= −
∑
v∈V

α̃vHv(µ̃v)−
∑
e∈E

α̃eHe(µ̃e)−
∑
e∈E

∑
v:v∈e

α̃v,eHe|v(µ̃e). (E.9)

We will analyze the entropy terms individually, using the gradient property of (strong)

convexity (Fact 4).

Fix any two vectors µ̃, µ̃′ ∈ M̃, and let δ , µ̃ − µ̃′. Recall that ∀v, ‖µ̃v‖1 =

‖µ̃′v‖1 = 1 and ∀e, ‖µ̃e‖1 = ‖µ̃′e‖1 = 1. Via Lemma 22, −Hv and −He are 1-strongly

convex in the probability simplex with respect to the 1-norm. By Fact 4, this means that

every node v satisfies,

〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), δv〉 ≥ ‖δv‖2

1 .

Therefore,

α̃v 〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), δv〉 ≥ α̃v ‖δv‖2

1

≥ α̃v ‖δv‖2
2

≥ κ

3
‖δv‖2

2 .

The same holds for every edge e. Further, by Lemma 23, He|v(µ̃e) = Hv(µ̃v)−He(µ̃e) is

convex, meaning 〈
∇(−He|v(µ̃e))−∇(−He|v(µ̃

′
e)), δe

〉
≥ 0.
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Thus, taking the gradient of Equation E.9, we have that

〈∇(−HC(µ̃))−∇(−HC(µ̃′)), δ〉 =
∑
v∈V

α̃v 〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), δv〉

+
∑
e∈E

α̃e 〈∇(−He(µ̃e))−∇(−He(µ̃
′
e)), δe〉

+
∑
e∈E

∑
v:v∈e

α̃v,e
〈
∇(−He|v(µ̃e))−∇(−He|v(µ̃

′
e)), δe

〉
≥ κ

3

∑
v∈V

‖δv‖2
2 +

κ

3

∑
e∈E

‖δe‖2
2 + 0

=
κ

3
‖δ‖2

2 ,

which completes the proof, via Fact 4.
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Appendix F: Figures from Chapter 7

In all plots, results are averaged over 20 trials and the y-axis has been rescaled to fit the

data. See Section 7.3.3 for discussion.
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Figure F.1: Plots of RMSE of the node marginals as a function of the interaction param-
eter, ωp. Inference is performed using the true model in (a)-(d), and the learned model in
(e)-(h). The first two columns correspond to a model with attractive potentials; the third
and fourth to a model with mixed potentials. The black dotted line is LBP; color dotted
lines are the convex baselines, and solid lines are their SC counterparts. The SC meth-
ods use the post hoc optimal value of κ (and C) in the counting number optimization.
For learned marginals, SC offers statistically significant error reduction—sometimes over
40%—for all data models and baselines, except C-Bethe at ωp = .5 in (g).
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Figure F.2: Plots of RMSE of the node marginals as a function of the convexity parameter,
κ, which determines the minimum modulus of convexity used in the counting number QP.
For κ < .1, we use Equation 7.12; for κ ≥ .1, we use Equation 7.13 and report the score
for the post hoc optimal C. SC algorithms are plotted as solid lines, and their respective
counterparts are overlaid as dashed lines. Inference is performed using the true model.
The first two rows correspond to a model with attractive potentials; the third and fourth to
a model with mixed potentials. In all plots, the x-axis scales logarithmically for κ > .1.
Certain plots have been truncated vertically to better fit the data.
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Figure F.3: Plots of RMSE of the node marginals as a function of the convexity parameter,
κ, when using the learned model for inference.
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Figure F.4: Select plots of RMSE as a function of the slack parameter, C, in the slackened
counting number QP (Equation 7.13), at higher values of κ. The slack parameter trades
off between fitting the target counting numbers and satisfying variable validity. Data is
generated using mixed potentials in all plots. These plots focus on the Bethe approxima-
tion. SC versions are solid color lines; C-Bethe is overlaid as a dashed red line.
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Figure F.5: Select plots of RMSE as a function of the slack parameter, C, for the tree-
reweighting approximation. SC versions are solid color lines; C-TRBP is overlaid as a
dashed blue line.
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J. Chazottes, P. Collet, C. Külske, and F. Redig. Concentration inequalities for random

fields via coupling. Probability Theory and Related Fields, 137:201–225, 2007.

M. Collins. Parameter estimation for statistical parsing models: Theory and practice of

distribution-free methods. In International Conference on Parsing Technologies, 2001.

177



C. Cortes, M. Mohri, D. Pechyony, and A. Rastogi. Stability of transductive regression

algorithms. In International Conference on Machine Learning, 2008.
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