Ben London
Ben London
Home
Posts
Publications
Experience
Contact
CV
Publications
Type
Conference paper
Journal article
Preprint
Book section
Thesis
Workshop
Date
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
Alexander Buchholz
,
Ben London
,
Giuseppe Benedetto
,
Jan Malte Lichtenberg
,
Yannik Stein
,
Thorsten Joachims
(2024).
Counterfactual Ranking Evaluation with Flexible Click Models
.
SIGIR
.
PDF
Cite
Ben London
,
Alexander Buchholz
,
Giuseppe Di Benedetto
,
Jan Malte Lichtenberg
,
Yannik Stein
,
Thorsten Joachims
(2023).
Self-Normalized Off-Policy Estimators for Ranking
.
CONSEQUENCES Workshop – RecSys
.
PDF
Cite
Olivier Jeunen
,
Ben London
(2023).
Offline Recommender System Evaluation under Unobserved Confounding
.
CONSEQUENCES Workshop – RecSys
.
PDF
Cite
Jan Malte Lichtenberg
,
Alexander Buchholz
,
Giuseppe Di Benedetto
,
Matteo Ruffini
,
Ben London
(2023).
Double clipping: Less-biased variance reduction in off-policy evaluation
.
CONSEQUENCES Workshop – RecSys
.
PDF
Cite
Giuseppe Di Benedetto
,
Alexander Buchholz
,
Ben London
,
Matej Jakimov
,
Yannik Stein
,
Jan Malte Lichtenberg
,
Vito Bellini
,
Matteo Ruffini
(2023).
Contextual Position Bias Estimation Using a Single Stochastic Logging Policy
.
LERI Workshop – RecSys
.
PDF
Cite
Ben London
,
Levi Lu
,
Ted Sandler
,
Thorsten Joachims
(2023).
Boosted Off-Policy Learning
.
International Conference on Artificial Intelligence and Statistics
.
PDF
Cite
Alexander Buchholz
,
Ben London
,
Giuseppe Benedetto
,
Thorsten Joachims
(2022).
Off-Policy Evaluation for Learning-to-Rank via Interpolating the Item-Position Model and the Position-Based Model
.
CONSEQUENCES+REVEAL Workshop – RecSys
.
PDF
Cite
Ben London
,
Thorsten Joachims
(2022).
Control Variate Diagnostics for Detecting Problems in Logged Bandit Feedback
.
CONSEQUENCES+REVEAL Workshop – RecSys
.
PDF
Cite
Thorsten Joachims
,
Ben London
,
Yi Su
,
Adith Swaminathan
,
Lequn Wang
(2021).
Recommendations as Treatments
.
A.I. Magazine
.
PDF
Cite
Ben London
(2020).
PAC-Identifiability in Federated Learning
.
NIPS Workshop on Scalability, Privacy and Security in Federated Learning
.
PDF
Cite
Ben London
,
Thorsten Joachims
(2020).
Offline Policy Evaluation with New Arms
.
NIPS Workshop on Offline Reinforcement Learning
.
PDF
Cite
Ofer Meshi
,
Ben London
,
David Weller
,
David Sontag
(2019).
Train and Test Tightness of LP Relaxations in Structured Prediction
.
Journal of Machine Learning Research
.
PDF
Cite
Ben London
,
Ted Sandler
(2019).
Bayesian Counterfactual Risk Minimization
.
International Conference on Machine Learning (ICML)
.
PDF
Cite
Sabina Tomkins
,
Steve Isley
,
Ben London
,
Lise Getoor
(2018).
Sustainability at Scale: Bridging the Intention-Behavior Gap with Sustainable Recommendations
.
Recommender Systems (RecSys)
.
PDF
Cite
Ben London
,
Ted Sandler
(2018).
Bayesian Counterfactual Risk Minimization
.
ICML Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML)
.
PDF
Cite
Ben London
(2017).
A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent
.
Neural Information Processing Systems
.
PDF
Cite
Ben London
,
Bert Huang
,
Lise Getoor
(2016).
Stability and Generalization in Structured Prediction
.
Journal of Machine Learning Research
.
PDF
Cite
Ben London
,
Alexander Schwing
(2016).
Generative Adversarial Structured Networks
.
NIPS Workshop on Adversarial Training
.
PDF
Cite
Ben London
(2016).
Generalization Bounds for Randomized Learning with Application to Stochastic Gradient Descent
.
NIPS Workshop on Optimizing the Optimizers
.
PDF
Cite
Ben London
,
Ofer Meshi
,
David Weller
(2016).
Bounding the Integrality Distance of LP Relaxations for Structured Prediction
.
NIPS Workshop on Optimization for ML
.
PDF
Cite
Ben London
,
Bert Huang
,
Lise Getoor
(2015).
The Benefits of Learning with Strongly Convex Approximate Inference
.
International Conference on Machine Learning (ICML)
.
PDF
Cite
Jay Pujara
,
Ben London
,
Lise Getoor
,
William Cohen
(2015).
Online Inference for Knowledge Graph Construction.
.
Workshop on Statistical Relational AI
.
Cite
Ben London
(2015).
On the Stability of Structured Prediction
.
PDF
Cite
Galileo Mark Namata
,
Ben London
,
Lise Getoor
(2015).
Collective Graph Identification
.
ACM Transactions on Knowledge Discovery from Data
.
PDF
Cite
Jay Pujara
,
Ben London
,
Lise Getoor
(2015).
Budgeted Online Collective Inference
.
Uncertainty in Artificial Intelligence
.
PDF
Cite
Ben London
,
Bert Huang
,
Benjamin Taskar
,
Lise Getoor
(2014).
PAC-Bayesian Collective Stability
.
International Conference on Artificial Intelligence and Statistics
.
PDF
Cite
Ben London
,
Bert Huang
,
Lise Getoor
(2014).
On the Strong Convexity of Variational Inference
.
NIPS Workshop on Advances in Variational Inference
.
PDF
Cite
Ben London
,
Bert Huang
,
Benjamin Taskar
,
Lise Getoor
(2013).
PAC-Bayes Generalization Bounds for Randomized Structured Prediction
.
NIPS Workshop on Perturbation, Optimization and Statistics
.
PDF
Cite
Ben London
,
Theodoros Rekatsinas
,
Bert Huang
,
Lise Getoor
(2013).
Multi-relational Learning Using Weighted Tensor Decomposition with Modular Loss
.
PDF
Cite
Stephen H. Bach
,
Bert Huang
,
Ben London
,
Lise Getoor
(2013).
Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction
.
Uncertainty in Artificial Intelligence
.
PDF
Cite
Ben London
,
Bert Huang
,
Lise Getoor
(2013).
Graph-based Generalization Bounds for Learning Binary Relations
.
PDF
Cite
Bert Huang
,
Ben London
,
Benjamin Taskar
,
Lise Getoor
(2013).
Empirical Analysis of Collective Stability
.
ICML Workshop on Structured Learning (SLG)
.
PDF
Cite
Ben London
,
Bert Huang
,
Benjamin Taskar
,
Lise Getoor
(2013).
Collective Stability in Structured Prediction: Generalization from One Example
.
International Conference on Machine Learning (ICML)
.
PDF
Cite
Ben London
,
Lise Getoor
(2013).
Collective Classification of Network Data
.
Data Classification: Algorithms and Applications
.
PDF
Cite
Ben London
,
Sameh Khamis
,
Stephen H. Bach
,
Bert Huang
,
Lise Getoor
,
Larry Davis
(2013).
Collective Activity Detection using Hinge-loss Markov Random Fields
.
CVPR Workshop on Structured Prediction: Tractability, Learning and Inference
.
PDF
Cite
Galileo Mark Namata
,
Ben London
,
Lise Getoor
,
Bert Huang
(2012).
Query-driven Active Surveying for Collective Classification
.
Workshop on Mining and Learning with Graphs
.
Cite
Ben London
,
Theodoros Rekatsinas
,
Bert Huang
,
Lise Getoor
(2012).
Multi-relational Weighted Tensor Decomposition
.
NIPS Workshop on Spectral Learning
.
Cite
Ben London
,
Bert Huang
,
Lise Getoor
(2012).
Improved Generalization Bounds for Large-scale Structured Prediction
.
NIPS Workshop on Algorithmic and Statistical Approaches for Large Social Networks
.
Cite
Jay Pujara
,
Ben London
,
Lise Getoor
(2011).
Reducing Label Cost by Combining Feature Labels and Crowdsourcing
.
ICML Workshop on Combining Learning Strategies to Reduce Label Cost
.
Cite
Cite
×